Since the gravitational force is directly proportional to the mass of both interacting objects, more massive objects will attract each other with a greater gravitational force. So as the mass of either object increases, the force of gravitational attraction between them also increases. If the mass of one of the objects is doubled, then the force of gravity between them is doubled. If the mass of one of the objects is tripled, then the force of gravity between them is tripled. If the mass of both of the objects is doubled, then the force of gravity between them is quadrupled; and so on.
Hope this helps.
Answer:
A. The percentage will increase
Explanation:
If the species is becoming resistant to the weed killer, natural selection will cause future generations to become resistant as well, therefore the percentage of resistant dollar weed will increase. Also I took the test lol.
Answer:
The correct pair is A: "apicomplexans—parasites of animals"
Explanation:
- Euglenophyta is a group of unicellular, eukaryotic organisms. They are small, free-living forms, or parasites that present different feeding mechanisms and behaviors, such as heterotrophy, autotrophy, or mixotrophy.
- Dinoflagellates are unicellular, flagellated, free-living protists that might form colonies. Most of them are autotrophic organisms but some of them are heterotrophic, or mixotrophic. In these last cases, dinoflagellates can feed on other dinoflagellates, protozoans, or diatoms. They can also be parasites.
- Entamoebas are endoparasitic organisms with no mitochondria as an adaptation of living in environments with low oxygen concentration.
- Apicomplexa is a unicellular, protist group. They have medical and economic importance as they are<u> animals</u> and human parasites. They have an apical complex that helps them to fixate to the host cell and release a substance that provokes an invagination in the host membrane. This invagination allows the parasite to get into the host cell.
Answer:
d
Explanation:
im pretty sure , srry if wrong
Answer:
Red blood.
Explanation:
Red blood is for oxygenated blood, while blue blood is for deoxygenated blood.
The blood in Isabelle's left ventricle would be red, in other words, oxygenated. The left ventricle has oxygenated blood because this blood was first in the right ventricle. Then, it went to the pulmonary arteries, which led the blood to the capillaries close to the alveoli in the lungs. In this area, the deoxygenated blood dropped the CO₂ and took O₂ becoming oxygenated blood. Now, this blood is color-coded red and will go to the pulmonary venules, then to the pulmonary vein, and from there, it will go to the left atrium. Lastly, it will go to the left ventricle to start the systemic circulation, which is the one that distributes the oxygenated blood in the body.