Answer:
The correct answer is "temporal lobe".
Explanation:
The temporal lobe is the part of the brain involved in primary auditory perception by receiving sensory information from the ears and secondary areas and translating in into meaningful units such as speech and words. It was proved since 1954 by Mishkin and Pribram that the removal of the temporal lobe part of the brain produces a severe visual discrimination deficit in monkeys. This is the case for Maria's experiment, when the monkey was not able to differentiate between the rectangle and the cylinder anymore. Therefore, it is very likely that the part of the monkey's brain that was removed was the temporal lobe.
Answer: The differences in the assembly and organization of the monomers of these two polymers result in different chemical properties.
Explanation:
Starch and Cellulose flare both polysaccharides which are constructed from the same monomer called glucose. The functions they provide in plants are different which includes the following:
- STARCH is used by plants for energy storage because unlike Cellulose, it's formed from glucose units( oriented in the same direction) connected by alpha linkages which can form compact structures that can easily be broken down.
- Cellulose provides structural support for plant cell wall because unlike Starch, it's formed from glucose units( which rotates 180 degrees around the axis of the polymer backbone chain) connected by beta linkages. This pattern gives Cellulose it's rigid features as is allows for hydrogen bonding between two molecules of Cellulose.
Therefore the statement that best describes why starch and cellulose provide different functions in plants is that (The differences in the assembly and organization of the monomers of these two polymers result in different chemical properties).
Answer:
Signal transduction pathways
Explanation:
Plant hormones act by directly affecting the activities of signal transduction pathways.
Signal transduction pathways are involved in the transfer of signals from outside of the cell to the inside of the cell for the regulation of various cellular activities. For this, the extracellular signalling molecules bind to the receptors that are located on the cell membrane. After their binding due to some change in the receptor molecule, a signal is triggered in to the cell and thus information from outside of the cell is transferred to the inside of the cell through these transduction pathways.
Plant hormones affect these pathways and as a result membranes, enzymes, and genes are also influenced by the plant hormones.
Explanation:
(3) active transport
The molecules would be moving against their concentration gradient from a region of low concentration to a region of high concentration.
While cells facilitate the transport of molecules via movement across the cell membrane, there many different mechanisms. These include passive diffusion, facilitated diffusion, and passive transport. However some very large molecules require specialized type of active transport, which requires energy in the form of ATP, in order to move substances across the membrane against their concentration gradient.
Active transport is a mediated process that requires an energy input and the use of specialized membrane proteins to move against the concentration gradient. These proteins require energy in the form of adenosine triphosphate or ATP in order to facilitate necessary conformational changes to the large protein molecules to alter the spatial location of the molecule. For instance, with Na+, K+ pumps in cell membranes.
Learn more about membrane components at brainly.com/question/1971706
Learn more about plasma membrane transport at brainly.com/question/11410881
#LearnWithBrainly