The chemical reaction in which number of atoms of each element present in the reactant side is equal to the number of atoms of that element in product side, such reactions are said to be a balanced chemical reaction.
The chemical symbol for sodium is
.
The chemical symbol for fluorine gas is
.
The chemical symbol for sodium fluoride is 
The sodium fluoride is prepared from the reaction between sodium metal and fluorine gas can be written as:

The above reaction is not balanced as the number of fluorine atoms are not same on reactant and product side. So, in order to balance the reaction we will multiply
with 2 on reactant side and
with 2 on product side. Thus, the balanced reaction will be:

Thus, the balanced chemical equation is
.
The total number of atoms make up the products :
D) 1 carbon, 4 hydrogen, and 4 oxygen
<h3>Further explanation
</h3>
Complete combustion of Hydrocarbons with Oxygen will produce CO₂ and H₂O compounds.
If O₂ is insufficient there will be incomplete combustion produced by CO and H and O
Hydrocarbon combustion reactions (especially alkanes)
For combustion of methane (CH₄) and two molecules of oxygen (O₂).

The number of atoms make up the products
CO₂ : 1 carbon, 2 oxygen
2H₂O : 4 hydrogen , 2 oxygen
Answer:
Keq = 0.217
Explanation:
Let's determine the equilibrium reaction.
In gaseous state, water vapor can be decomposed to hydrogen and oxygen and this is a reversible reaction.
2H₂(g) + O₂(g) ⇄ 2H₂O (g) Keq
Let's make the expression for the equilibrium constant
Products / Reactants
We elevate the concentrations, to the stoichiometry coefficients.
Keq = [H₂O]² / [O₂] . [H₂]²
Keq = 0.250² / 0.8 . 0.6² = 0.217
Answer:
a) If the solvent-solute interactions in a mixture are <u>stronger than</u> the solvent-solvent interactions and the solute-solute interactions, a homogeneous solution forms.
b) If the solvent-solute interactions in a mixture are <u>weaker than</u> the solvent-solvent interactions and the solute-solute interactions, the formation of a homogeneous solution is uncertain.
Explanation:
The solubility of solute in given solvent mainly depends upon the intermolecular interactions between the solvent and the solute. If the solute is surrounded and solvated by the solvent then the solute will dissolve in that solvent. Therefore, in order to dissolve the solute must form stronger interactions with the solvent as compared to the solute solute interactions or solvent solvent interactions.
Example:
When NaCl is added to water the partial negative oxygen of water is attracted to Na⁺ of NaCl and the partial positive hydrogen of water is attracted to Cl⁻ of NaCl. These new interactions between the NaCl ions and water are stronger than the interactions between water molecules and NaCl molecules themselves hence, results in solubility of NaCl in water.
On the other hand, if NaCl is added to Hexane (C₆H₁₄) it fails to make strong interactions with the solvent molecules resulting in insolubility of NaCl in hexane.
<u>Answer:</u> The given statement is true.
<u>Explanation:</u>
For the reaction to be spontaneous, the Gibbs free energy of the reaction must come out to be negative.
The equation used to calculate Gibbs free energy follows:

Exothermic reactions are defined as the reactions in which energy is released in the form of heat. The enthalpy change
of the reaction comes out to be negative for this kind of reaction.
Entropy change is defined as the change in the measure of randomness in the reaction. It is represented as
. Randomness of gaseous particles is more than that of liquid which is further more than that of solids.
We are given:
A solid substance is converting into a gaseous substance.

As, the entropy is increasing. So, the entropy change is positive.
Thus, the above reaction is spontaneous.
Hence, the given statement is true.