<span>Generally speaking, the level of molecular motion is highest in gases, where molecules move around freely in space, bouncing off of each other, and lowest in solids, where molecules are bound together in a rigid structure. As such, the answer would be A; "the molecules in air move more than the molecules in wood".</span>
The lord of the greeks answer d
Period, T = 1/ f.
f = frequency = 200 Hz.
Period T = 1/200 = 0.005 seconds.
Answer: 0.5 m/s
Explanation:
Given
Speed of the sled, v = 0.55 m/s
Total mass, m = 96.5 kg
Mass of the rock, m1 = 0.3 kg
Speed of the rock, v1 = 17.5 m/s
To solve this, we would use the law of conservation of momentum
Momentum before throwing the rock: m*V = 96.5 kg * 0.550 m/s = 53.08 Ns
When the man throws the rock forward
rock:
m1 = 0.300 kg
V1 = 17.5 m/s, in the same direction of the sled with the man
m2 = 96.5 kg - 0.300 kg = 96.2 kg
v2 = ?
Law of conservation of momentum states that the momentum is equal before and after the throw.
momentum before throw = momentum after throw
53.08 = 0.300 * 17.5 + 96.2 * v2
53.08 = 5.25 + 96.2 * v2
v2 = [53.08 - 5.25 ] / 96.2
v2 = 47.83 / 96.2
v2 = 0.497 ~= 0.50 m/s
The ball will take 2.551 seconds to reach its peak position.
<h3>How much time will the ball take to land?</h3>
We must know how long the balls are in the air before we can predict where they will fall. It will take 2 seconds for both balls to touch the ground.
<h3>How quickly does a ball drop?</h3>
The falling ball travels a distance of d = 12 9.8 (m/s2) t2, with a speed of v = 9.8 (m/s2) t as a function of time. The ball travels 4.9 m in a second. The falling ball's velocity is v = -9.8 (m/s2) t j, and its position is r = (4.9 m - 12 9.8 (m/s2) t2) j as a function of time.
To know more about balls visit:-
brainly.com/question/19930452
#SPJ4