1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sati [7]
2 years ago
15

Using your strategy to overcome your obstacle.

Physics
2 answers:
Rama09 [41]2 years ago
7 0

Answer:

​Don’t complain. People don’t want to hear woe is me over and over again, especially if you do nothing about it. However, do ask for help and for suggestions from others that may have been in similar situations. You have to be willing to help yourself. People can’t do it for you.

Explanation:

USPshnik [31]2 years ago
6 0

Answer:

buena suerte con las citas del futuro

Explanation:

You might be interested in
A coil of 40 turns is wrapped around a long solenoid of cross-sectional area 7.5×10−3m2. The solenoid is 0.50 m long and has 500
defon

To solve this problem it is necessary to apply the concepts related to mutual inductance in a solenoid.

This definition is described in the following equation as,

M = \frac{\mu_0 N_1 N_2A_1}{l_1}

Where,

\mu =permeability of free space

N_1 = Number of turns in solenoid 1

N_2 = Number of turns in solenoid 2

A_1= Cross sectional area of solenoid

l = Length of the solenoid

Part A )

Our values are given as,

\mu_0 = 4\pi *10^{-7}H/m

N_1 = 500

N_2 = 40

A = 7.5*10^{-4}m^2

l = 0.5m

Substituting,

M = \frac{\mu_0 N_1 N_2A_2}{l_1}

M = \frac{(4\pi *10^{-7})(500)(40)(7.5*10^{-4})}{0.5}

M = 3.77*10^{-4}H

PART B) Considering that many of the variables remain unchanged in the second solenoid, such as the increase in the radius or magnetic field, we can conclude that mutual inducantia will appear the same.

8 0
3 years ago
A bicycle rider has a speed of 19.0 m/s at a height of 55.0 m above sea level when he begins coasting down hill. The mass of the
lukranit [14]

Answer:

The mechanical energy of the rider at any height will be 6.34 × 10⁴ J.

Explanation:

Hi there!

The mechanical energy of the rider is calculated as the sum of the gravitational potential energy plus the kinetic energy. Since there are no dissipative forces (like friction), the mechanical energy of the rider at a height of 55.0 m above the sea level will be the same at a height of 25.0 m (or at any height), because the loss in potential energy will be compensated by a gain in kinetic energy, according to the law of conservation of energy.

Then, calculating the potential and kinetic energy at 55.0 m and 19 m/s, we can obtain the mechanical energy that will be constant:

Mechanical energy = PE + KE

Where:

PE = potential energy.

KE = kinetic energy.

The potential energy is calculated as follows:

PE = m · g · h

Where:

m = mass of the object.

g = acceleration due to gravity.

h = height.

Then, the potential energy of the rider will be:

PE = 88.0 kg · 9.81 m/s² · 55.0 m = 4.75 × 10⁴ J

The kinetic energy is calculated as follows:

KE = 1/2 · m · v²

Where "m" is the mass of the object and "v" its velocity. Then:

KE = 1/2 · 88.0 kg · (19.0 m/s)²

KE = 1.59 × 10⁴ J

The mechanical energy of the rider will be:

Mechanical energy = PE + KE = 4.75 × 10⁴ J + 1.59 × 10⁴ J = 6.34 × 10⁴ J

This mechanical energy is constant because when the rider coast down the hill, its potential energy is being converted into kinetic energy, so that the sum of potential energy plus kinetic energy remains constant.

5 0
3 years ago
How many planets are there?
larisa86 [58]
Their are 8 planets.
<span>Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, and Neptune.
</span>Their were 9 planets.
4 0
3 years ago
Read 2 more answers
HEEEEELLLLPPPPPPPPP pldzzdd​
geniusboy [140]

Answer:

A: 240 watts

Explanation:

Hopefully this helps!

4 0
3 years ago
A nonconducting spherical shell, with an inner radius of 4 cm and an outer radius of 6 cm, has charge spread nonuniformly throug
Vaselesa [24]

Answer:

1.57 * 10^{3} Q

Explanation:

The volume charge density is defined by ρ = \frac{Q}{V} (Equation A), where Q is the charge and V, the volume.

The units in the S.I. are \frac{Coulombs}{m^{3} }, so we have to express the radius in meters:

inner radius = 4 cm * \frac{1 m}{100 cm} = 0.04m

outer radius = 6 cm * \frac{1m}{100cm}  = 0.06m

Now, we know that the volume of the sphere is calculated by the formula:

V = \frac{4}{3}\pi r^{3}, and as we have an spherical shell, the volume is calculated by the difference between the outher and inner spheres:

V = \frac{4}{3}\pi (r_{o} ^{3} - r_{i} ^{3}), where r_{o} is the outer radius and r_{i} is the inner radius.

Replacing the volume formula in the Equation A:

ρ = \frac{Q}{\frac{4}{3}\pi(r^{3} _{o}-r_{i} ^{3})}

ρ = \frac{3Q}{4\pi (r_{o} ^{3}-r_{i} ^{3} ) }

Replacing the values of the outer and inner radius whe have:

ρ = \frac{3Q}{4\pi (1.52 * 10^{-4})}

ρ = 1.57 * 10^{3} Q

4 0
3 years ago
Other questions:
  • The movement of energy from the sun toward the earth is an example of ?
    15·2 answers
  • A beam of hydrogen molecules (h2) is directed toward a wall, at an angle of 55 with the normal to the wall. each molecule in the
    5·1 answer
  • What is the angle of reflection?
    14·1 answer
  • What is the kinetic energy of a ball with a mass of .5 kg and a velocity of 10 m/s
    6·1 answer
  • You pick up a 3.4 kg can of paint from the ground and lift it to a height of 1.8 m. how much work do you do on the can of paint?
    5·1 answer
  • PLEASE HELP! ASAP!
    9·1 answer
  • In lab, a radiation detector was used to calculate the background radiation. The
    6·1 answer
  • An ultrasound machine is being used to try to identify potential kidney stones. The machine is working properly and no kidney st
    11·2 answers
  • Why does oil not dissolve in water?
    11·1 answer
  • Please help!! For a science quiz
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!