answer is :D it would be a great answer
Answer:
simple, Volt =change in potential energy/Charge
the unit of energy is newton meter (Force*distance)
the unit of charge is coloumb
So, Volt/meter=newton* meter/coloumb*meter
=newton/coloumb (hence proved)
This unit is the potential drop per unit of length in a conductive wire with uniform resistance
Explanation:
Given that,
Mass of the ball, m = 1.2 kg
Initial speed of the ball, u = 10 m/s
Height of the floor from ground, h = 32 m
(a) Let v is the final speed of the ball. It can be calculated using the conservation of energy as :



v = -25.04 m/s (negative as it rebounds)
The impulse acting on the ball is equal to the change in momentum. It can be calculated as :


J = -42.048 kg-m/s
(b) Time of contact, t = 0.02 s
Let F is the average force on the floor from by the ball. Impulse acting on an object is given by :



F = 0.8409 N
Hence, this is the required solution.
Answer:
It will be A. So since its 2 times more the kinetic energy. But then you have to square it 2^2 = 4
Answer:
The National Grid is the system operator of Great Britain's electricity and gas supply. This includes England, Scotland and Wales. It is the company that manages the network and distribution of electricity and gas that powers all our homes and businesses.
Explanation: