19372)19292
Hahaha ss
Qowieuww
Explanation:
Upon dissolution of KCl heat is generated and temperature of the solution raises.
Therefore, heat generated by dissolving 0.25 moles of KCl will be as follows.

= 4.31 kJ
or, = 4310 J (as 1 kJ = 1000 J)
Mass of solution will be the sum of mass of water and mass of KCl.
Mass of Solution = mass of water + (no. of moles of KCl × molar mass)
= 200 g + 
= 200 g + 13.625 g
= 213.625 g
Relation between heat, mass and change in temperature is as follows.
Q = 
where, C = specific heat of water = 
Therefore, putting the given values into the above formula as follows.
Q = 
4310 J =
Thus, we can conclude that rise in temperature will be
.
If you start with 40.0 grams of the element at noon, 10.0 grams
radioactive element will be left at 2 p.m. The correct answer between
all the choices given is the second choice or letter B. I am hoping that this
answer has satisfied your query and it will be able to help you in your
endeavor, and if you would like, feel free to ask another question.
1 mole C3H8 produces 4 moles H2O. So, first we convert 32 grams of propane to moles and then find moles of H2O. Then convert moles of H2O to grams of H2O
Moles of H2O produced = 32 g C3H8 x 1 mole/44 g x 4 moles H2O/mole C3H8 = 2.909 moles H2O
Grams H2O produced = 2.909 moles H2O x 18 g/mole = 52.36 g = 52 g H2O
Answer: b. It would happen faster at warmer air temperatures
Explanation:saw another site say this was the answer