Complete Question
Assume that when adults with smartphones are randomly selected 42% use them in meetings or classes if 15 adult smartphones are randomly selected, find the probability that "fewer" than 4 of them use their smartphones
Answer:
The probability is ![P[X < 4]= 0.00314](https://tex.z-dn.net/?f=P%5BX%20%3C%204%5D%3D%200.00314)
Step-by-step explanation:
From the question we are told that
The proportion of those that use smartphone in meeting and classes is p = 0.42
The sample size is 
The proportion of those that don't use smartphone in meeting and classes is

=> 
=> 
Now from the question we can deduce that the usage of the smartphone is having a binomial distribution since there is only two outcome
So the probability that "fewer" than 4 of them use their smartphones is mathematically evaluated as
=
=> ![P[X < 4] = [ \left 15} \atop {0}} \right. ] p^{15-0} * q^0 + [ \left 15} \atop {1}} \right. ] p^{15-1 }* q^1 + [ \left 15} \atop {2}} \right. ] p^{15-2 }* q^2 + [ \left 15} \atop {3}} \right. ] p^{15-3 }* q^3](https://tex.z-dn.net/?f=P%5BX%20%3C%20%204%5D%20%3D%20%5B%20%5Cleft%2015%7D%20%5Catop%20%7B0%7D%7D%20%5Cright.%20%5D%20p%5E%7B15-0%7D%20%2A%20%20q%5E0%20%2B%20%20%5B%20%5Cleft%2015%7D%20%5Catop%20%7B1%7D%7D%20%5Cright.%20%5D%20p%5E%7B15-1%20%7D%2A%20%20q%5E1%20%2B%20%20%5B%20%5Cleft%2015%7D%20%5Catop%20%7B2%7D%7D%20%5Cright.%20%5D%20p%5E%7B15-2%20%7D%2A%20%20q%5E2%20%2B%20%20%20%20%5B%20%5Cleft%2015%7D%20%5Catop%20%7B3%7D%7D%20%5Cright.%20%5D%20p%5E%7B15-3%20%7D%2A%20%20q%5E3)
Where
implies 15 combination 0 which has a value of 1 this is obtained using a scientific calculator
So for the rest of the equation we will be making use of a scientific calculator to obtain the combinations
![P[X < 4] = 1 * ^{15} * q^0 + 15 * p^{14 }* q^1 + 105 * p^{13 }* q^2 + 455 * p^{12 }* q^3](https://tex.z-dn.net/?f=P%5BX%20%3C%20%204%5D%20%3D%201%20%2A%20%5E%7B15%7D%20%2A%20%20q%5E0%20%2B%2015%20%2A%20p%5E%7B14%20%7D%2A%20%20q%5E1%20%2B%20105%20%2A%20p%5E%7B13%20%7D%2A%20%20q%5E2%20%2B%20%20%20455%20%2A%20%20p%5E%7B12%20%7D%2A%20%20q%5E3)
substituting values

=> ![P[X < 4]= 0.00314](https://tex.z-dn.net/?f=P%5BX%20%3C%204%5D%3D%200.00314)