Answer:
number 2 is C and number 3 is D
Step-by-step explanation:
Answer:
Total number of tables of first type = 23.
Total number of tables of second type = 7
Step-by-step explanation:
It is given that there are 30 tables in total and there are two types of tables.
Let's call the two seat tables, the first type as x and the second type as y.
∴ x + y = 30 ......(1)
Also a total number of 81 people are seated. Therefore, 2x number of people would be seated on the the first type and 5y on the second type. Hence the equation becomes:
2x + 5y = 81 .....(2)
To solve (1) & (2) Multiply (1) by 2 and subtract, we get:
y = 7
Substituting y = 7 in (1), we get x = 23.
∴ The number of tables of first kind = 23
The number of tables of second kind = 7
1/4 is 25% or 0.25
1/5 is 20% or 0.20
So the difference between the two is 5%, 0.05, or 1/20.
<h3>Answer: </h3>
The GCF is 4
The polynomial factors to 
==========================================================
Further explanation:
Ignore the x terms
We're looking for the GCF of 12, 4 and 20
Factor each to their prime factorization. It might help to do a factor tree, but this is optional.
- 12 = 2*2*3
- 4 = 2*2
- 20 = 2*2*5
Each factorization involves "2*2", which means 2*2 = 4 is the GCF here.
We can then factor like so

The distributive property pulls out that common 4. We can verify this by distributing the 4 back in, so we get the original expression back again.
The polynomial inside the parenthesis cannot be factored further. Proof of this can be found by looking at the roots and noticing that they aren't rational numbers (use the quadratic formula).