Question has missing details (Full question below)
Measurement error that is continuous and uniformly distributed from –3 to +3 millivolts is added to a circuit’s true voltage. Then the measurement is rounded to the nearest millivolt so that it becomes discrete. Suppose that the true voltage is 219 millivolts. What is the mean and variance of the measured voltage
Answer:
Mean = 219
Variance = 4
Step-by-step explanation:
Given
Let X be a random variable measurement error.
X has a discrete uniform distribution as follows
a = 219 - 3 = 216
b = 219 + 3 = 222
Mean or Expected value is calculated as follows;
E(x) = ½(216+222)
E(x) = ½ * 438
E(x) = 219
Variance is calculated as follows;
Var(x) = ((b-a+1)²-1)/12
Var(x) = ((222-216+1)²-1)/12
Var(x) = (7²-1)/12
Var(x) = 48/12
Var(x) = 4
I believe the second one, double check
Answer:
The transformed points of the triangle ABC are
,
, 
Step-by-step explanation:
The new points after applying the scale factor are, respectively:






Answer:
C
Step-by-step explanation:
It is C because the 2 is attached to the variable Y