Concentration of Solutions is oftenly expressed in Molarity. Molarity is the number of moles of solute dissolved per volume of solution.
Molarity = Moles / Volume
As,
Moles = Mass / M.mass
So,
Molarity = Mass / M.mass × Volume ---- (1)
Data Given;
Volume = 0.750 L
Mass = 52 g
M.mass = 180 g/mol
Putting Values in eq.1,
Molarity = 52 g ÷ (180 g.mol⁻¹ × 0.750 L)
Molarity = 0.385 mol.L⁻¹
Answer:
The answer is "Option D".
Explanation:
The behavior of 0.1M NaCl also isn't substantially larger objectively than those of 0.05M NaCl because a p-value above 0.05 (p>0.05) indicates no ability to tell differential and is a strong proof in favor of a null hypothesis.
The other wrong choices can be defined as follows:
- Option A as it's just the reverse of the correct answer to the null.
- Options B and C because p worth tests to support nor oppose the null hypothesis.
<span>Ionic compounds are normally in which physical state at room temperature in solid. The answer is A.
</span>Ionic Compounds Are Balanced. Table salt is an example of an ionic compound. Sodium<span> and </span>chlorine<span>ions come together to form </span>sodium chloride<span>, or </span>NaCl<span>. The </span>sodium atom<span> in this compound loses an electron to become Na+, while the </span>chlorine<span> atom gains an electron to become Cl-.</span>
You put in a variable to substitute the unknown number.