Answer:
1) d = 2.4 g/cm³
2) m = 25 g
3) v = 126.7 cm³
Explanation:
Given data:
Mass of material = 24 g
Volume of material = 10 cm³
Density of material = ?
Solution:
Formula:
d = m/v
by putting value,
d = 24 g / 10 cm³
d = 2.4 g/cm³
2) Given data:
Density of material = 5 g/cm³
Volume of material = 5 cm³
Mass of material = ?
Solution:
Formula:
d = m/v
5 g/cm³ = m / 5 cm³
m = 5 g/cm³×5 cm³
m = 25 g
3)Given data:
Density of material = 3 g/cm³
Mass of material = 380 g
Volume of material = ?
Solution:
Formula:
d = m/v
3 g/cm³ = 380 g / v
v = 380 g /3 g/cm³
v = 126.7 cm³
The electron configuration
1
s
2
2
s
2
2
p
6
3
s
2
3
p
2
is the element Silicon.
The key to deciphering this is to look at the last bit of information of the electron configuration
3
p
2
.
The '3' informs us that the element is in the 3rd Energy Level or row of the periodic table. The 'p' tells us that the element is found in the p-block which are all of the Groups to the right of the transition metals, columns 13-18. The superscript '2' tells us that the element is found in the 2nd column of the p-block Group 14.
<span>https://www.onetonline.org/find/career?c=6</span>
Which of the following measurements is expressed to three significant figures?
C. 5.60 km
Hope this helps!
Answer: The molality of solution is 17.6 mole/kg
Explanation:
Molality of a solution is defined as the number of moles of solute dissolved per kg of the solvent.
where,
n = moles of solute
= weight of solvent in kg
moles of acetone (solute) = 0.241
moles of water (solvent )= (1-0.241) = 0.759
mass of water (solvent )=
Now put all the given values in the formula of molality, we get
Therefore, the molality of solution is 17.6 mole/kg