Answer:
613 mg
Explanation:

Number of fargday's 
Here, I = 9.20 A
t = 10.5 min
= 10.5 x 60 seconds
So, 

= 0.0208 F
Here, 2e, 2F
2F = 1 mol of Ni

1 mol = 59 gm of Ni
0.0104 mol = 59 x0.0104 gm Ni
= 0.613 gm Ni
= (0.613 x 1000 ) mg of Ni
= 613 mg of Ni
Answer: 0.055 moles of
are produced by the reaction of 0.055 mol of ammonium perchlorate.
Explanation:
The balanced chemical reaction for decomposition of ammonium perchlorate is:
According to stoichiometry :
2 moles of
produce = 2 moles of
Thus 0.055 moles of
will produce =
of
Thus 0.055 moles of
are produced by the reaction of 0.055mol of ammonium perchlorate.
Answer:
c
Explanation:
the correct answer would be answer c
A reaction occurs between the two gases Chlorine monofluoride (ClF) and Fluorine (F₂) when they are added together and as a result of the reaction a compound named, Chlorine trifluoride (ClF₃) is formed.
The reaction which occurs by addition of Chlorine monofluoride (ClF) and Fluorine (F₂) is as follows -
ClF (g) + F₂ (g) = ClF₃ (l)
When one molecule of Chlorine monofluoride (ClF) reacts with one molecule of Fluorine (F₂) gas, both the gases react together to form one molecule of Chlorine trifluoride (ClF₃) which is a liquid. Therefore, the above reaction is already balanced.
Chlorine trifluoride (ClF₃) is a greenish-yellow liquid which acts as an important fluorinating agent and is also an interhalogen compound (compounds that are formed by mixing two different halogen compounds together). Other than it's liquid state ClF₃ also can exist as a colorless gas. This compound ClF₃ is a very toxic, very corrosive and powerful oxidizer used as an igniter and propellent in rockets.
Learn more about Chlorine monofluoride (ClF) here-
brainly.com/question/17129650
#SPJ4
Answer:
In physics, the kinetic energy of an object is the energy that it possesses due to its motion It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity Having gained this energy during its acceleration the body maintains this kinetic energy unless its speed changes
Example:
A semi-truck travelling down the road
A river flowing at a certain speed