Answer:
<h2>- It could be stretched into a thin wire.</h2>
Explanation:
As per the question, the most rational claim that the student can make about the aluminum metal is that 'it could be stretched into a thin wire' without breaking which shows its ductility. It is one of the most significant characteristics of a metal. Metals can conduct electricity in any state and not only when melted. Thus, option A is wrong. Options C and D are incorrect as metals neither have the same shape always nor do they break on hitting with a hammer. Therefore, <u>option E</u> is the correct answer.
Answer:
it is a solid
Explanation:
a solid is a fixed shape and size while liquids and gasses are not
CaCO₃ partially dissociates in water as Ca²⁺ and CO₃²⁻. The balanced equation is,
CaCO₃(s) ⇄ Ca²⁺(aq) + CO₃²⁻(aq)
Initial Y - -
Change -X +X +X
Equilibrium Y-X X X
Ksp for the CaCO₃(s) is 3.36 x 10⁻⁹ M²
Ksp = [Ca²⁺(aq)][CO₃²⁻(aq)]
3.36 x 10⁻⁹ M² = X * X
3.36 x 10⁻⁹ M² = X²
X = 5.79 x 10⁻⁵ M
Hence the solubility of CaCO₃(s) = 5.79 x 10⁻⁵ M
= 5.79 x 10⁻⁵ mol/L
Molar mass of CaCO₃ = 100 g mol⁻¹
Hence the solubility of CaCO₃ = 5.79 x 10⁻⁵ mol/L x 100 g mol⁻¹
= 5.79 x 10⁻³ g/L
Answer:
2Al + 3ZnCl₂ → 3Zn + 2AlCl₃
Explanation:
Chemical equation:
Al + ZnCl₂ → Zn + AlCl₃
Balanced Chemical equation:
2Al + 3ZnCl₂ → 3Zn + 2AlCl₃
This is the example of single displacement reaction. Al displace the zinc and form aluminium chloride and zinc metal.
There are two Al three zinc and six chlorine atoms on both side of equation so it is correctly balanced.
Thus it completely follow the law of conservation of mass.
Law of conservation of mass:
According to the law of conservation mass, mass can neither be created nor destroyed in a chemical equation.
This law was given by french chemist Antoine Lavoisier in 1789. According to this law mass of reactant and mass of product must be equal, because masses are not created or destroyed in a chemical reaction.
Mass of the water : 2.23 g
<h3>Furter explanation</h3>
Heat
Q = m.c.Δt
m= mass, g
c = heat capacity, for water : 4.18 J/g° C.
ΔT = temperature
Q= 140 J
Δt = 75 - 60 = 15
mass of the water :