Answer:-12, -10, -3.5, 6, 11
Step-by-step explanation:
Answer:
For a monthly cost of at least $7 and at most $8, you can have between 100 and 110 calling minutes.
Step-by-step explanation:
The problem states that the monthly cost of a celular plan is modeled by the following function:

In which C(x) is the monthly cost and x is the number of calling minutes.
How many calling minutes are needed for a monthly cost of at least $7?
This can be solved by the following inequality:






For a monthly cost of at least $7, you need to have at least 100 calling minutes.
How many calling minutes are needed for a monthly cost of at most 8:






For a monthly cost of at most $8, you need to have at most 110 calling minutes.
For a monthly cost of at least $7 and at most $8, you can have between 100 and 110 calling minutes.
The answer is <span>2^7 = 128<span>
</span></span>
<em>θ</em> is given to be in the fourth quadrant (270° < <em>θ</em> < 360°) for which sin(<em>θ</em>) < 0 and cos(<em>θ</em>) > 0. This means
cos²(<em>θ</em>) + sin²(<em>θ</em>) = 1 ==> sin(<em>θ</em>) = -√[1 - cos²(<em>θ</em>)] = -3/5
Now recall the double angle identity for sine:
sin(2<em>θ</em>) = 2 sin(<em>θ</em>) cos(<em>θ</em>)
==> sin(2<em>θ</em>) = 2 (-3/5) (4/5) = -24/25