2.5% means 0.025 .
After an increase of 2.5%, the new rate is (1.025) x (the old rate).
1.025 x $6.00 = $6.15 per hour.
If you work a full 40 hours in some week, you will be blessed with
a full $6 more for the week of toil than you would have collected
at the old rate.
You were not overpaid before the raise, and you must not allow
your boss to act as if you should kiss his ring or prostrate yourself
before him in return for 2.5% . It was not too long ago that 2.5% was
tantamount to being shown the way to the door, and a tacit suggestion
that you consider following in the way of the arrow.
Answer:
Step-by-step explanation:
Here are some steps to help you
Step 1
30x2 - 25x -30 Factoring
Step 2
30x2 - 25x -30 factor out the equation
5(3x+2)(2x-3)
Step 3
5(3x+2)(2x-3) Check by simplifying
When you check, you will get the question back
Answer
5(3x+2)(2x-3)
Hope this helps
Answer:
Answer B
Step-by-step explanation:
Because (IQR) by 1.5 (a constant used to discern outliers). Add 1.5 x (IQR) to the third quartile. Any number greater than this is a suspected outlier. Subtract 1.5 x (IQR) from the first quartile.
Answer:
a) 
b) 
General Formulas and Concepts:
<u>Pre-Calculus</u>
<u>Calculus</u>
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]: ![\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Bcf%28x%29%5D%20%3D%20c%20%5Ccdot%20f%27%28x%29)
Derivative Property [Addition/Subtraction]:
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Product Rule]: ![\displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Bf%28x%29g%28x%29%5D%3Df%27%28x%29g%28x%29%20%2B%20g%27%28x%29f%28x%29)
Derivative Rule [Quotient Rule]: ![\displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5B%5Cfrac%7Bf%28x%29%7D%7Bg%28x%29%7D%20%5D%3D%5Cfrac%7Bg%28x%29f%27%28x%29-g%27%28x%29f%28x%29%7D%7Bg%5E2%28x%29%7D)
Derivative Rule [Chain Rule]: ![\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28g%28x%29%29%5D%20%3Df%27%28g%28x%29%29%20%5Ccdot%20g%27%28x%29)
Trigonometric Differentiation
Logarithmic Differentiation
Step-by-step explanation:
a)
<u>Step 1: Define</u>
<em>Identify</em>

<u>Step 2: Differentiate</u>
- Logarithmic Differentiation [Chain Rule]:
![\displaystyle \frac{dy}{dx} = \frac{1}{\frac{1 - x}{\sqrt{1 + x^2}}} \cdot \frac{d}{dx}[\frac{1 - x}{\sqrt{1 + x^2}}]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bdy%7D%7Bdx%7D%20%3D%20%5Cfrac%7B1%7D%7B%5Cfrac%7B1%20-%20x%7D%7B%5Csqrt%7B1%20%2B%20x%5E2%7D%7D%7D%20%5Ccdot%20%5Cfrac%7Bd%7D%7Bdx%7D%5B%5Cfrac%7B1%20-%20x%7D%7B%5Csqrt%7B1%20%2B%20x%5E2%7D%7D%5D)
- Simplify:
![\displaystyle \frac{dy}{dx} = \frac{-\sqrt{x^2 + 1}}{x - 1} \cdot \frac{d}{dx}[\frac{1 - x}{\sqrt{1 + x^2}}]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bdy%7D%7Bdx%7D%20%3D%20%5Cfrac%7B-%5Csqrt%7Bx%5E2%20%2B%201%7D%7D%7Bx%20-%201%7D%20%5Ccdot%20%5Cfrac%7Bd%7D%7Bdx%7D%5B%5Cfrac%7B1%20-%20x%7D%7B%5Csqrt%7B1%20%2B%20x%5E2%7D%7D%5D)
- Quotient Rule:

- Basic Power Rule [Chain Rule]:

- Simplify:

- Simplify:

<u>Step 3: Find</u>
- Substitute in <em>x</em> = 0 [Derivative]:

- Evaluate:

b)
<u>Step 1: Define</u>
<em>Identify</em>

<u>Step 2: Differentiate</u>
- Logarithmic Differentiation [Chain Rule]:
![\displaystyle \frac{dy}{dx} = \frac{1}{\frac{1 + sinx}{1 - cosx}} \cdot \frac{d}{dx}[\frac{1 + sinx}{1 - cosx}]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bdy%7D%7Bdx%7D%20%3D%20%5Cfrac%7B1%7D%7B%5Cfrac%7B1%20%2B%20sinx%7D%7B1%20-%20cosx%7D%7D%20%5Ccdot%20%5Cfrac%7Bd%7D%7Bdx%7D%5B%5Cfrac%7B1%20%2B%20sinx%7D%7B1%20-%20cosx%7D%5D)
- Simplify:
![\displaystyle \frac{dy}{dx} = \frac{-[cos(x) - 1]}{sin(x) + 1} \cdot \frac{d}{dx}[\frac{1 + sinx}{1 - cosx}]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bdy%7D%7Bdx%7D%20%3D%20%5Cfrac%7B-%5Bcos%28x%29%20-%201%5D%7D%7Bsin%28x%29%20%2B%201%7D%20%5Ccdot%20%5Cfrac%7Bd%7D%7Bdx%7D%5B%5Cfrac%7B1%20%2B%20sinx%7D%7B1%20-%20cosx%7D%5D)
- Quotient Rule:
![\displaystyle \frac{dy}{dx} = \frac{-[cos(x) - 1]}{sin(x) + 1} \cdot \frac{(1 + sinx)'(1 - cosx) - (1 + sinx)(1 - cosx)'}{(1 - cosx)^2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bdy%7D%7Bdx%7D%20%3D%20%5Cfrac%7B-%5Bcos%28x%29%20-%201%5D%7D%7Bsin%28x%29%20%2B%201%7D%20%5Ccdot%20%5Cfrac%7B%281%20%2B%20sinx%29%27%281%20-%20cosx%29%20-%20%281%20%2B%20sinx%29%281%20-%20cosx%29%27%7D%7B%281%20-%20cosx%29%5E2%7D)
- Trigonometric Differentiation:
![\displaystyle \frac{dy}{dx} = \frac{-[cos(x) - 1]}{sin(x) + 1} \cdot \frac{cos(x)(1 - cosx) - sin(x)(1 + sinx)}{(1 - cosx)^2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bdy%7D%7Bdx%7D%20%3D%20%5Cfrac%7B-%5Bcos%28x%29%20-%201%5D%7D%7Bsin%28x%29%20%2B%201%7D%20%5Ccdot%20%5Cfrac%7Bcos%28x%29%281%20-%20cosx%29%20-%20sin%28x%29%281%20%2B%20sinx%29%7D%7B%281%20-%20cosx%29%5E2%7D)
- Simplify:
![\displaystyle \frac{dy}{dx} = \frac{-[cos(x) - sin(x) - 1]}{[sin(x) + 1][cos(x) - 1]}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bdy%7D%7Bdx%7D%20%3D%20%5Cfrac%7B-%5Bcos%28x%29%20-%20sin%28x%29%20-%201%5D%7D%7B%5Bsin%28x%29%20%2B%201%5D%5Bcos%28x%29%20-%201%5D%7D)
<u>Step 3: Find</u>
- Substitute in <em>x</em> = π/2 [Derivative]:
![\displaystyle \frac{dy}{dx} \bigg| \limit_{x = \frac{\pi}{2}} = \frac{-[cos(\frac{\pi}{2}) - sin(\frac{\pi}{2}) - 1]}{[sin(\frac{\pi}{2}) + 1][cos(\frac{\pi}{2}) - 1]}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bdy%7D%7Bdx%7D%20%5Cbigg%7C%20%5Climit_%7Bx%20%3D%20%5Cfrac%7B%5Cpi%7D%7B2%7D%7D%20%3D%20%5Cfrac%7B-%5Bcos%28%5Cfrac%7B%5Cpi%7D%7B2%7D%29%20-%20sin%28%5Cfrac%7B%5Cpi%7D%7B2%7D%29%20-%201%5D%7D%7B%5Bsin%28%5Cfrac%7B%5Cpi%7D%7B2%7D%29%20%2B%201%5D%5Bcos%28%5Cfrac%7B%5Cpi%7D%7B2%7D%29%20-%201%5D%7D)
- Evaluate [Unit Circle]:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation
Book: College Calculus 10e