1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
guapka [62]
3 years ago
12

Use De Moivre's theorem to find the indicated power of the complex number. Write the answer in rectangular form.[2(cos10∘ + i si

n10∘)]^3.
Mathematics
1 answer:
Dmitry [639]3 years ago
3 0

Answer:

\bold{4\sqrt3 + i4}

Step-by-step explanation:

Given complex number is:

[2(cos10^\circ + i sin10^\circ)]^3

To find:

Answer in rectangular form after using De Moivre's theorem = ?

i.e. the form a+ib (not in forms of angles)

Solution:

De Moivre's theorem provides us a way of solving the powers of complex numbers written in polar form.

As per De Moivre's theorem:

(cos\theta+isin\theta)^n = cos(n\theta)+i(sin(n\theta))

So, the given complex number can be written as:

[2(cos10^\circ + i sin10^\circ)]^3\\\Rightarrow 2^3 \times (cos10^\circ + i sin10^\circ)^3

Now, using De Moivre's theorem:

\Rightarrow 2^3 \times (cos10^\circ + i sin10^\circ)^3\\\Rightarrow 8 \times [cos(3 \times10)^\circ + i sin(3 \times10^\circ)]\\\Rightarrow 8 \times (cos30^\circ + i sin30^\circ)\\\Rightarrow 8 \times (\dfrac{\sqrt3}2 + i \dfrac{1}{2})\\\Rightarrow \dfrac{\sqrt3}2\times 8 + i \dfrac{1}{2}\times 8\\\Rightarrow \bold{4\sqrt3 + i4}

So, the answer in rectangular form is:

\bold{4\sqrt3 + i4}

You might be interested in
Be sure to answer all parts. List the evaluation points corresponding to the midpoint of each subinterval to three decimal place
gayaneshka [121]

Answer:

The Riemann Sum for \int\limits^5_4 {x^2+4} \, dx with n = 4 using midpoints is about 24.328125.

Step-by-step explanation:

We want to find the Riemann Sum for \int\limits^5_4 {x^2+4} \, dx with n = 4 using midpoints.

The Midpoint Sum uses the midpoints of a sub-interval:

\int_{a}^{b}f(x)dx\approx\Delta{x}\left(f\left(\frac{x_0+x_1}{2}\right)+f\left(\frac{x_1+x_2}{2}\right)+f\left(\frac{x_2+x_3}{2}\right)+...+f\left(\frac{x_{n-2}+x_{n-1}}{2}\right)+f\left(\frac{x_{n-1}+x_{n}}{2}\right)\right)

where \Delta{x}=\frac{b-a}{n}

We know that a = 4, b = 5, n = 4.

Therefore, \Delta{x}=\frac{5-4}{4}=\frac{1}{4}

Divide the interval [4, 5] into n = 4 sub-intervals of length \Delta{x}=\frac{1}{4}

\left[4, \frac{17}{4}\right], \left[\frac{17}{4}, \frac{9}{2}\right], \left[\frac{9}{2}, \frac{19}{4}\right], \left[\frac{19}{4}, 5\right]

Now, we just evaluate the function at the midpoints:

f\left(\frac{x_{0}+x_{1}}{2}\right)=f\left(\frac{\left(4\right)+\left(\frac{17}{4}\right)}{2}\right)=f\left(\frac{33}{8}\right)=\frac{1345}{64}=21.015625

f\left(\frac{x_{1}+x_{2}}{2}\right)=f\left(\frac{\left(\frac{17}{4}\right)+\left(\frac{9}{2}\right)}{2}\right)=f\left(\frac{35}{8}\right)=\frac{1481}{64}=23.140625

f\left(\frac{x_{2}+x_{3}}{2}\right)=f\left(\frac{\left(\frac{9}{2}\right)+\left(\frac{19}{4}\right)}{2}\right)=f\left(\frac{37}{8}\right)=\frac{1625}{64}=25.390625

f\left(\frac{x_{3}+x_{4}}{2}\right)=f\left(\frac{\left(\frac{19}{4}\right)+\left(5\right)}{2}\right)=f\left(\frac{39}{8}\right)=\frac{1777}{64}=27.765625

Finally, use the Midpoint Sum formula

\frac{1}{4}(21.015625+23.140625+25.390625+27.765625)=24.328125

This is the sketch of the function and the approximating rectangles.

5 0
4 years ago
What is the are of the figure below radius 6in 6in 6in 6in
Verdich [7]

Answer:

ok

Step-by-step explanation:

3 0
3 years ago
Simplify the expresion: 2+(a+8)
Marta_Voda [28]
A + 10 is the answer.
3 0
3 years ago
What is 9 + 10<br> A. 19<br> B.18<br> C. 20<br> D.21
Tpy6a [65]

Answer:

A. 19

Step-by-step explanation:

10 + 9 = 19

3 0
3 years ago
Read 2 more answers
(4,2) in y+mx+b form<br> Line 1<br> Line 2<br> Graph above
Vikentia [17]

Answer:

Step-by-step explanation:

3 0
3 years ago
Other questions:
  • Marking brainliest for the right answer
    9·2 answers
  • What are the values of the trigonometric ratios for this triangle?
    6·2 answers
  • What is 175.42 rounded to the nearest tenth?
    15·1 answer
  • An airplane 28,000 feet above ground begins descending at a constant rate of 2,000 feet per minute. Which equation gives the hei
    15·1 answer
  • In a ceremony, out of 800 participants, 620 drank milk, 350 drank tea and 50 did not
    11·1 answer
  • Help pleaseeeeeee tyyyyyyyyy
    14·2 answers
  • Find the length of ĀB.
    6·1 answer
  • D)<br>Section B<br>1.<br>Find the values.<br>a) 5% of 80​
    6·1 answer
  • The stock of Company A lost $5.31 throughout the day and ended at a value of $112.69. By what percentage did the stock decline?
    13·1 answer
  • Can someone help me out!
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!