Answer:
Years 3-4 and the percentage change was by 8%. Please vote Brainliest!
Step-by-step explanation:
Answer:
I believe it is 0.5
Step-by-step explanation:
If you flip a normal coin (called a “fair” coin in probability parlance), you normally have no way to predict whether it will come up heads or tails. Both outcomes are equally likely. There is one bit of uncertainty; the probability of a head, written p(h), is 0.5 and the probability of a tail (p(t)) is 0.5. The sum of the probabilities of all the possible outcomes adds up to 1.0, the number of bits of uncertainty we had about the outcome before the flip. Since exactly one of the four outcomes has to happen, the sum of the probabilities for the four possibilities has to be 1.0. To relate this to information theory, this is like saying there is one bit of uncertainty about which of the four outcomes will happen before each pair of coin flips. And since each combination is equally likely, the probability of each outcome is 1/4 = 0.25. Assuming the coin is fair (has the same probability of heads and tails), the chance of guessing correctly is 50%, so you'd expect half the guesses to be correct and half to be wrong. So, if we ask the subject to guess heads or tails for each of 100 coin flips, we'd expect about 50 of the guesses to be correct. Suppose a new subject walks into the lab and manages to guess heads or tails correctly for 60 out of 100 tosses. Evidence of precognition, or perhaps the subject's possessing a telekinetic power which causes the coin to land with the guessed face up? Well,…no. In all likelihood, we've observed nothing more than good luck. The probability of 60 correct guesses out of 100 is about 2.8%, which means that if we do a large number of experiments flipping 100 coins, about every 35 experiments we can expect a score of 60 or better, purely due to chance.
The answer is III only, or D.
We can start to solve this by knowing what the HL theorem means. The HL theorem, like its name implies, shows says that if a hypotenuse and leg of a triangle are congruent to the hypotenuse and leg of a different triangle, then the triangles are congruent. The only triangle that we see a hypotenuse congruent in is in figure III. In figure II, those congruent sides are both legs while in figure I we just see 2 congruent angles. Now in figure III, we can also see that two legs are congruent because of the reflexive property. That means that the answer is III, or D.
Answer:
Find the domain by finding where the equation is defined. The range is the set of values that correspond with the domain.Domain: [4,∞),{x|x≥4}[4,∞),{x|x≥4}Range: [0,∞),{y|y≥0}
Answer:
4 seconds
Step-by-step explanation:
When the ball is on the ground h = 0, hence
- 16t² + 64t = 0 ( solve for t )
factor out - 16t
- 16t(t - 4) = 0
equate each factor to zero and solve for t
- 16t = 0 ⇒ t = 0
t - 4 = 0 ⇒ t = 4
the 0 solution is the height of the ball before being hit and
the time the ball takes to hit the ground is 4 seconds