Answer:
Step-by-step explanation:
surface area=2×1/2×10×12+2×1/2×2×13+10×2
=120+26+20
=166 square units
Answer:
Trapezoid 1 (left side):
Base 1 = 2
Base 2 = 5
Trapezoid 2 (right side):
Base 1 = 6
Base 2 = 8
Step-by-step explanation:
<u>1st trapezoid:</u>
b_1 = x
b_2 = x + 3
h = 4
Hence, area (from formula) would be:

<u>2nd trapezoid:</u>
b_1 = 3x
b_2 = 4x
h = 2
Putting into formula, we get:

Let's equate both equations for area and find x first:

We can plug in 2 into x and find length of each base of each trapezoid.
Trapezoid 1 (left side):
Base 1 = x = 2
Base 2 = x + 3 = 2 + 3 = 5
Trapezoid 2 (right side):
Base 1 = 3x = 3(2) = 6
Base 2 = 4x = 4(2) = 8
Answer:
c. m∠1 + m∠6 = m∠4 + m∠6
Step-by-step explanation:
Given: The lines l and m are parallel lines.
The parallel lines cut two transverse lines. Here we can use the properties of transverse and find the incorrect statements.
a. m∠1 + m∠2 = m∠3 + m∠4
Here m∠1 and m∠2 are supplementary angles add upto 180 degrees.
m∠3 and m∠4 are supplementary angles add upto 180 degrees.
Therefore, the statement is true.
b. m∠1 + m∠5 = m∠3 + m∠4
m∠1 + m∠5 = 180 same side of the adjacent angles.
m∠3 + m∠4 = 180, supplementary angles add upto 180 degrees.
Therefore, the statement is true.
Now let's check c.
m∠1 + m∠6 = m∠4 + m∠6
We can cancel out m∠6, we get
m∠1 = m∠4 which is not true
Now let's check d.
m∠3 + m∠4 = m∠7 + m∠4
We can cancel out m∠4, we get
m∠3 = m∠7, alternative interior angles are equal.
It is true.
Therefore, answer is c. m∠1 + m∠6 = m∠4 + m∠6
Whats not affected by the
others outcome
Answer:
I'm pretty sure that'd be 8567