Answer:
The lateral surface area of the triangular prism is 379.5sq units
Step-by-step explanation:
The side lengths of the base of the triangular prism are 5 meters, 8 meters, and 10 meters.
It is given that the height of the prism is 16.5 meters.
To determine the lateral surface area of the prism, let us use the formula
where a, b,c are the side lengths of the base of the triangular prism and h is the height of the prism.
Here and
Substituting these values in the formula, we have,
Simplifying, we get,
Multiplying, we get,
Thus, the lateral surface area of the triangular prism is
The vertical asymptotes of a function secant are determined by the points that are not in domain.
Thank you.
Answer:
Table shown below
Step-by-step explanation:
To solve this problem let's use proportions.
If 2 pounds of grapes cost $6, half the amount will cost half the dollars, so the last row will have $3 in the price
For the second row, we know the price is $1, that is, one-sixth of the original given price. It should correspond to one-sixth of the amount of grapes or 2/6 pounds.
Simplifying the fraction, we get 1/3 or 0.33 pounds
To find this I would use the pythagorean theorem which is:
a^2 + b^2 = c^2
Since we already know c = hypotenuse, and a side of the shorter sides we can plug them it like this:
11^2 + b^2 = 12^2
121 + b^2 = 144
b^2 = 23
√23 = 4.79
Round:
B. 4.8 would be your answer!