Answer:
RxN: Na₂CO₃ (aq) + 2HCl (aq) → 2NaCl (aq) + H₂CO₃ (aq)
NIE: n/a
Explanation:
Step 1: Predict (Double Replacement)
Na₂CO₃ (aq) + HCl (aq) → NaCl (aq) + H₂CO₃ (aq)
Step 2: Balance
Na₂CO₃ (aq) + 2HCl (aq) → 2NaCl (aq) + H₂CO₃ (aq)
Step 3: Write Total Ionic Equation
2Na⁺ (aq) + CO₃²⁻ (aq) + 2H⁺ (aq) + 2Cl⁻ (aq) → 2Na⁺ (aq) + 2Cl⁻ (aq) + 2H⁺ (aq) + CO₃²⁻ (aq)
Step 4: Remove Spectator Ions
- Na⁺
- CO₃²⁻
- H⁺
- Cl⁻
Step 5: Write Net Ionic Equation
None.
<span>We have a sample of a gas which is a compound of carbon and oxygen. Chemical analysis shows that it contains 2.4 g of carbon and 6.4 g of oxygen. What is its formula?</span>
C to D
Explanation:
it rises faster between those two points
I believe the percent yield is 56% if going by the formula of mass of actual yield/theoretical yield x 100%/
<u>Answer:</u> The empirical and molecular formula of the compound is
and
respectively
<u>Explanation:</u>
We are given:
Mass of C = 3.758 g
Mass of H = 0.316 g
Mass of O = 1.251 g
To formulate the empirical formula, we need to follow some steps:
- <u>Step 1:</u> Converting the given masses into moles.
Moles of Carbon =
Moles of Hydrogen = 
Moles of Oxygen = 
- <u>Step 2:</u> Calculating the mole ratio of the given elements.
For the mole ratio, we divide each value of the moles by the smallest number of moles calculated which is 0.078 moles.
For Carbon = 
For Hydrogen = 
For Oxygen = 
- <u>Step 3:</u> Taking the mole ratio as their subscripts.
The ratio of C : H : O = 4 : 4 : 1
The empirical formula for the given compound is 
For determining the molecular formula, we need to determine the valency which is multiplied by each element to get the molecular formula.
The equation used to calculate the valency is:

We are given:
Mass of molecular formula = 130 g/mol
Mass of empirical formula = 68 g/mol
Putting values in above equation, we get:

Multiplying this valency by the subscript of every element of empirical formula, we get:

Hence, the empirical and molecular formula of the compound is
and
respectively