According to the gas law, the pressure of the gas is related to the temperature when the volume is constant as P1/T1=P2/T2. So the pressure will increase and the container may explode.
0.6 mol / L is the molarity of a solution prepared by dissolving 36. 0 g of NaOH in enough water to make 1. 50 l of solution.
The amount of a substance in a specific volume of solution is known as its molarity (M). The number of moles of a solute per liter of a solution is known as molarity. The molar concentration of a solution is another term for molarity.
The ratio employed to indicate the solution's concentration is called its molarity. Understanding a solution's molarity is important since it allows you to determine the actual concentration as well as whether the solution is diluted or concentrated.
Amount of NaOH = 36. 0 g
Amount of water = 1. 50 L
1 mol of NaOH = 40 g,
Moles of NaOH = 36. 0 / 40 g = 0.9 mol NaOH
Molarity of a solution = moles of solute / Liters of solution
Molarity of a solution = 0.9 / 1.50
Molarity of a solution = 0.6 mol / L
To know more about Molarity refer to: brainly.com/question/8732513
#SPJ4
Answer:
1.5x10²² particulates
Explanation:
Assuming ideal behaviour, we can solve this problem by using the <em>PV=nRT </em>formula, where:
- V = 250 mL ⇒ 250 / 1000 = 0.250 L
- R = 0.082 atm·L·mol⁻¹·K⁻¹
- T = 15 °C ⇒ 15 + 273 = 288 K
We <u>input the given data</u>:
- 2.4 atm * 0.250 L = n * 0.082 atm·L·mol⁻¹·K⁻¹ * 288 K
And <u>solve for n</u>:
Finally we <u>calculate how many particulates are there in 0.025 moles</u>, using <em>Avogadro's number</em>:
- 0.025 mol * 6.023x10²³ particulates/mol = 1.5x10²² particulates
1.........................