A polynomial function of least degree with integral coefficients that has the
given zeros 
Given
Given zeros are 3i, -1 and 0
complex zeros occurs in pairs. 3i is one of the zero
-3i is the other zero
So zeros are 3i, -3i, 0 and -1
Now we write the zeros in factor form
If 'a' is a zero then (x-a) is a factor
the factor form of given zeros

Now we multiply it to get the polynomial

polynomial function of least degree with integral coefficients that has the
given zeros 
Learn more : brainly.com/question/7619478
Answer:
Polynomial equation solver
x-3=3x-2
Standard form:
−2x − 1 = 0
Factorization:
−(2x + 1) = 0
Solutions:
x = −1
2
= -0.5
Answer:
-8748
Step-by-step explanation:
(6^2)(-3^5)
(6 x 6)(-3 x-3 x-3 x -3 x -3)
(36)(-243)
36 x -243
-8748
Answer:
it would look like this
Step-by-step explanation: