Step-by-step explanation:


To solve a system of equations, we can add the two equations and solve for one of the remaining variables -- let's try to eliminate the
variable when we add the two equations together.
Right now, there's a
term in the first equation, and a
term in the second equation, so if we add those together, we'll be able to eliminate the
variable altogether and solve for
.
However, when we also have a
term in the first equation and
term in the second equation, so adding these together will also eliminate the
term, leaving a
on the left-hand side of the equation.
If we add the two numbers on the right side of the equation, we get
, which does not equal
, meaning there are no solutions to this system of equations.
Answer:
Option A. (-1, 0)
Step-by-step explanation:
In the figure attached,
Circle O is a unit circle (having radius r = 1 unit)
If a point A with central angles = θ, is lying on the circle then the coordinates of the point A will be,
x = r.cosθ
x = 1.cosθ = cosθ
and y = r.sinθ
y = 1.sinθ = sinθ
Therefore, coordinates representing the point A will be (cosθ, sinθ).
As per question the given point A is lying at P (a point having central angle θ = 180°)
Coordinates of point P will be
(x', y') → (cos180°, sin180°)
→ (-1, 0)
Therefore, Option A will be the answer.
Answer:
140 options
Step-by-step explanation:
10 * 14 = 140
Answer:
City @ 2017 = 8,920,800
Suburbs @ 2017 = 1, 897, 200
Step-by-step explanation:
Solution:
- Let p_c be the population in the city ( in a given year ) and p_s is the population in the suburbs ( in a given year ) . The first sentence tell us that populations p_c' and p_s' for next year would be:
0.94*p_c + 0.04*p_s = p_c'
0.06*p_c + 0.96*p_s = p_s'
- Assuming 6% moved while remaining 94% remained settled at the time of migrations.
- The matrix representation is as follows:
- In the sequence for where x_k denotes population of kth year and x_k+1 denotes population of x_k+1 year. We have:
![\left[\begin{array}{cc}0.94&0.04\\0.06&0.96\end{array}\right] x_k = x_k_+_1](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D0.94%260.04%5C%5C0.06%260.96%5Cend%7Barray%7D%5Cright%5D%20x_k%20%3D%20x_k_%2B_1)
- Let x_o be the populations defined given as 10,000,000 and 800,000 respectively for city and suburbs. We will have a population x_1 as a vector for year 2016 as follows:
![\left[\begin{array}{cc}0.94&0.04\\0.06&0.96\end{array}\right] x_o = x_1](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D0.94%260.04%5C%5C0.06%260.96%5Cend%7Barray%7D%5Cright%5D%20x_o%20%3D%20x_1)
- To get the population in year 2017 we will multiply the migration matrix to the population vector x_1 in 2016 to obtain x_2.
![x_2 = \left[\begin{array}{cc}0.94&0.04\\0.06&0.96\end{array}\right]\left[\begin{array}{cc}0.94&0.04\\0.06&0.96\end{array}\right] x_o](https://tex.z-dn.net/?f=x_2%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D0.94%260.04%5C%5C0.06%260.96%5Cend%7Barray%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D0.94%260.04%5C%5C0.06%260.96%5Cend%7Barray%7D%5Cright%5D%20x_o)
- Where,
![x_o = \left[\begin{array}{c}10,000,000\\800,000\end{array}\right]](https://tex.z-dn.net/?f=x_o%20%3D%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D10%2C000%2C000%5C%5C800%2C000%5Cend%7Barray%7D%5Cright%5D)
- The population in 2017 x_2 would be:
![x_2 = \left[\begin{array}{cc}0.94&0.04\\0.06&0.96\end{array}\right]\left[\begin{array}{cc}0.94&0.04\\0.06&0.96\end{array}\right] \left[\begin{array}{c}10,000,000\\800,000\end{array}\right] \\\\\\x_2 = \left[\begin{array}{c}8,920,800\\1,879,200\end{array}\right]](https://tex.z-dn.net/?f=x_2%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D0.94%260.04%5C%5C0.06%260.96%5Cend%7Barray%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D0.94%260.04%5C%5C0.06%260.96%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D10%2C000%2C000%5C%5C800%2C000%5Cend%7Barray%7D%5Cright%5D%20%5C%5C%5C%5C%5C%5Cx_2%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D8%2C920%2C800%5C%5C1%2C879%2C200%5Cend%7Barray%7D%5Cright%5D)