Answers:1)Tthe first answer is that as x increases the value of p(x) approaches a number that is greater than q (x).
2) the y-intercept of the function p is greater than the y-intercept of the function q.
Explanation:1) Value of the functions as x increases.Function p:

As x increases, the value of the function is the limit when x → ∞.
Since [2/5] is less than 1,
the limit of [2/5]ˣ when x → ∞ is 0, and the limit of p(x) is 0 - 3 = -3.While in the graph you see that the function
q has a horizontal asymptote that shows that the
limit of q (x) when x → ∞ is - 4.Then, the first answer is that
as x increases the value of p(x) approaches a number that is greater than q (x).2) y - intercepts.i) To determine the y-intercept of the function p(x), just replace x = 0 in the equation:
p(x) = [ 2 / 5]⁰ - 3 = 1 - 3 = - 2ii) The y-intercept of q(x) is read in the
graph. It is - 3.
Then the answer is that
the y-intercept of the function p is greater than the y-intercept of the function q.
5 students scored a 90 or above. If you look at the axis that says “test scores” just count the number of dots on the “90” line and above
You would have to evaluate the problem so it would be 940
Answer:
x must be 5
Step-by-step explanation:
Recall that the area formula for a trapezoid is
A = (average of base lengths)(width)
Here we have
17 cm + x
(average of base lengths) = 11 cm = ----------------
2
So 2(11 cm) = 17 cm + x, or
22 cm = 17 cm + x
Then x must be 5.