Answer:
B
Step-by-step explanation:
No these triangles are not congruent.
<u>Left triangle</u>
Shortest side = 6 cm
Longest side = 13 cm
3rd side = unknown but < 13
<u>Right triangle</u>
Shortest side = 6 cm
Longest side = unknown but > 13
3rd side = 13 cm
Although the shortest side of both triangles is 6 cm, the longest side of the left triangle is 13 cm, whereas the longest side of the right triangle is unknown but will be more than 13 cm.
We do not know if any of the angles are congruent. If they were congruent, we would expect to see this marked by the same angle line(s) on each triangle.
yes because its the square root. hope it helps
Answer:
sin(A-B) = 24/25
Step-by-step explanation:
The trig identity for the differnce of angles tells you ...
sin(A -B) = sin(A)cos(B) -sin(B)cos(A)
We are given that sin(A) = 4/5 in quadrant II, so cos(A) = -√(1-(4/5)^2) = -3/5.
And we are given that cos(B) = 3/5 in quadrant I, so sin(B) = 4/5.
Then ...
sin(A-B) = (4/5)(3/5) -(4/5)(-3/5) = 12/25 + 12/25 = 24/25
The desired sine is 24/25.
Answer:
Maya used a drawing to divide 86. She made groups of 17 with 1 left over. Draw a picture to determine how many groups Maya made.
Step-by-step explanation:
It might be the wrong answer! Sorry
I strongly recommend that you find an illustration of an ellipse that features the three distances a, b and c. You could Google "ellipse" and sort through the various illustrations that result, until you find the "right one."
There is an equation that relates a, b and c for an ellipse. It is a^2 = b^2 + c^2.
a is relatively easy to find. It is the distance from the center (0,0) of your ellipse to the right-hand vertex (20,0). So a = 20.
b is the distance from the center (0,0) of your ellipse to the right-hand focus (16,0). So b = 16. You could stop here, as it was your job to find b.
Or you could continue and find a also. a^2 =b^2 + c^2, so
here a^2 = 16^2 + 20^2. Solve this for a.