It's Z.
Without any force acting on it an object travels in a straight line.
In order to bend away from a straight line the object needs a force acting on it.
In order to move along a circle, the force on the object points toward the center of the circle. It's called the centripetal force.
Since the object's direction is changing it has acceleration.
The acceleration points toward the center of the circle.
Answer/Explanation:
The mechanical energy is 200 joules. Mechanical energy is determined by adding the total kinetic energy by the total potential energy.
M = kp
100 + 100 = 200
Answer:
1: the refracted angle in the first face is equal to the incident angle that is 60degrees
2. Emergence Angle is 42degrees
Explanation:
Pls see attached file
Answer:
a ) 2.368 rad/s
b) 3.617 rad/s
Explanation:
the minimum angular velocity that Prof. Stefanovic needs to spin the bucket for the water not to fall out can be determined by applying force equation in a circular path
i.e
------ equation (1)
where;


Also

since; that is the initial minimum angular velocity to keep the water in the bucket
Now; we can rewrite our equation as :

So; Given that:
The rope that is attached to the bucket is lm long and his arm is 75 cm long.
we have our radius r = 1 m + 75 cm
= ( 1 + 0.75 ) m
= 1.75 m
g = acceleration due to gravity = 9.81 m/s²
Replacing our values into equation (2) ; we have:

b) if he detaches the rope and spins the bucket by holding it with his hand ; then the radius = 0.75 m
∴

Answer:
18.75 rad/s
Explanation:
Moment of inertia of the disk;
I_d = ½ × m_disk × r²
I_d = ½ × 10 × 4²
I_d = 80 kg.m²
I_package = m_pack × r²
Now,it's at 2m from the centre, thus;
I_package = 5 × 2²
I_package = 20 Kg.m²
From conservation of momentum;
(I_disk + I_package)ω1 = I_disk × ω2
Where ω1 = 15 rad/s and ω2 is the unknown angular velocity of the disk/package system.
Thus;
Plugging in the relevant values, we obtain;
(80 + 20)15 = 80 × ω2
1500 = 80ω2
ω2 = 1500/80
ω2 = 18.75 rad/s