Answer:
The maximum potential energy of the system is 0.2 J
Explanation:
Hi there!
When the spring is stretched, it acquires potential energy. When released, the potential energy is converted into kinetic energy. If there is no friction nor any dissipative forces, all the potential energy will be converted into kinetic energy according to the energy conservation theorem.
The equation of elastic potential energy (EPE) is the following:
EPE = 1/2 · k · x²
Where:
k = spring constant.
x = stretching distance.
The elastic potential energy is maximum when the block has no kinetic energy, just before releasing it.
Then:
EPE = 1/2 · 40 N/m · (0.1 m)²
EPE = 0.2 J
The maximum potential energy of the system is 0.2 J
Answer:
Force = 125 [N]
Explanation:
In the attached image we can see a sketch of the lever system.
And if we make a sum of moments at the point O equal to zero (0).
In the equation showed in the image, we can determinate the force that we need
Gravity obeys the inverse square law. At 6400 km above the center of the Earth (Earth's surface) you weigh x. Twice that reduces your weight to 1/4th. Four times that height reduces your weight to 1/16th. 4 times 6400 km is 25,600 km. But that is above the center of the earth, and the question requests the height above the surface, so we deduct 6400 km to arrive at our final answer: 19,200 km.
Incidentally, it doesn't exactly work the opposite way. At the center of the Earth the mass would be equally distributed around you, and you would therefore be weightless.
Answer:
u= 187.61 ft/s
Explanation:
Given that
g= - 32 ft/s²
The maximum height ,h= 550 ft
Lets take the initial velocity = u ft/s
We know that
v²=u² + 2 g s
v=final speed ,u=initial speed ,s=height
When the object reach at the maximum height then the final speed of the object will become zero.
That is why
u²= 2 x 32 x 550
u²= 35200
u= 187.61 ft/s
That is why the initial speed will be 187.61 ft/s