The answer is B because, the farther the goes the speed starts to decrease and stops it depends on the frequency of the wave.
Answer:
The answer is D.
Explanation:
Just like how cold air falls and warm air rises the same is with water.
Also the places with the coldest water is the north and south pole. The equator is relatively always warm so yeah.
The work done by the friction force to stop the player is equal to his loss of kinetic energy:

The work done by the friction force is the magnitude of the force

times the distance covered by the player, d:

The loss in kinetic energy is simply equal to the initial kinetic energy of the player, since the final kinetic energy is zero (the player comes to rest):

Substituting into the first equation, we get:

from which we find d, the distance covered by the player:
Answer:
The moment of inertia of this sphere is
.
Explanation:
It is given that,
Mass of the sphere, m = 4.8 kg
Radius of the sphere, r = 22 cm = 0.22 m
Tangential force, F = 11.2 N
The moment of inertia of the uniform sphere is given by :



So, the moment of inertia of this sphere is
. Hence, this is the required solution.