Answer:
(a) 
(b) 
(c) 
Explanation:
First change the units of the velocity, using these equivalents
and 

The angular acceleration
the time rate of change of the angular speed
according to:


Where
is the original velocity, in the case the velocity before starting the deceleration, and
is the final velocity, equal to zero because it has stopped.

b) To find the distance traveled in radians use the formula:


To change this result to inches, solve the angular displacement
for the distance traveled
(
is the radius).


c) The displacement is the difference between the original position and the final. But in every complete rotation of the rim, the point returns to its original position. so is needed to know how many rotations did the point in the 890.16 rad of distant traveled:

The real difference is in the 0.6667 (or 2/3) of the rotation. To find the distance between these positions imagine a triangle formed with the center of the blade (point C), the initial position (point A) and the final position (point B). The angle
is between the two sides known. Using the theorem of the cosine we can find the missing side of the the triangle(which is also the net displacement):


What you do is, multiply 16.0 and 12.4 together. then multiply that by 40a
Answer:
In economics, elasticity is the measurement of the percentage change of one economic variable in response to a change in another.
An elastic variable (with an absolute elasticity value greater than 1) is one which responds more than proportionally to changes in other variables. In contrast, an inelastic variable (with an absolute elasticity value less than 1) is one which changes less than proportionally in response to changes in other variables. A variable can have different values of its elasticity at different starting points: for example, the quantity of a good supplied by producers might be elastic at low prices but inelastic at higher prices, so that a rise from an initially low price might bring on a more-than-proportionate increase in quantity supplied while a rise from an initially high price might bring on a less-than-proportionate rise in quantity supplied.
Elasticity can be quantified as the ratio of the percentage change in one variable to the percentage change in another variable, when the latter variable has a causal influence on the former. A more precise definition is given in terms of differential calculus. It is a tool for measuring the responsiveness of one variable to changes in another, causative variable. Elasticity has the advantage of being a unitless ratio, independent of the type of quantities being varied. Frequently used elasticities include price elasticity of demand, price elasticity of supply, income elasticity of demand, elasticity of substitution between factors of production and elasticity of intertemporal substitution.
Elasticity is one of the most important concepts in neoclassical economic theory. It is useful in understanding the incidence of indirect taxation, marginal concepts as they relate to the theory of the firm, and distribution of wealth and different types of goods as they relate to the theory of consumer choice. Elasticity is also crucially important in any discussion of welfare distribution, in particular consumer surplus, producer surplus, or government surplus.
In empirical work an elasticity is the estimated coefficient in a linear regression equation where both the dependent variable and the independent variable are in natural logs. Elasticity is a popular tool among empiricists because it is independent of units and thus simplifies data analysis.
A major study of the price elasticity of supply and the price elasticity of demand for US products was undertaken by Joshua Levy and Trevor Pollock in the late 1960s..
Electron<span>. the central part of an atom containing </span>protons<span> and </span>neutrons<span> ... which of the following is necessary to calculate the atomic </span>mass<span> of an element? ... which of the </span>statements correctly compares<span>the relative size of an ion to its neutral atom?</span>