To solve this problem it is necessary to apply the concepts related to the kinematic equations of movement description, which determine the velocity, such as the displacement of a particle as a function of time, that is to say

Where,
x = Displacement
v = Velocity
t = Time
Our values are given as,


Replacing we have that,



Therefore the distance from Earth to the Moon is 399.000 km
Answer:
x is vertical and y is horizontal
Explanation:
Answer:
The hiker followed a road heading north for 2 miles in 30 minutes.
Explanation:
In order to describe the motion of an object, distance covered and time taken must be required. The total path covered by an object is called the distance travelled.
The hiker followed a road heading north for 2 miles in 30 minutes. This describes the motion of hiker. The motion shows how fast the hiker is moving.
Distance, d = 2 miles = 3218.6 m
times, t = 30 minutes = 1800 seconds
So, we can say that the hiker is moving with a speed of 1.78 m/s in north direction.
Hence, this is the required solution.
The magnitude of the vector C is 96.32m
<h3>How to solve for the magnitude of vector c</h3>
Ax = AcosθA
= 40 cOS 20
= 37.59
Ay = AsinθA
-40sin20
= -13.68
Bx = B cos θ B
= 75Cos50
= 48.21
By = BsinθB
= 75sin50
= 57.45
Cx = AX + Bx
= 37.59 + 48.21
= 85.8
Cy = Ay + By
= -13.65 + 57.45
= 43.77
The magnitude is solved by
|c| = 
= √85.8² + 43.77²
= 96.32m
The magnitude of the vector c is 96.32m
Read more on the magnitude of a vector here:
brainly.com/question/3184914
#SPJ1