1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ankoles [38]
2 years ago
13

En 16 años, Juan tendrá 3 veces la edad que José tiene ahora. Indica qué planteamientos son correctos.

Mathematics
1 answer:
ladessa [460]2 years ago
5 0

Answer:

La edad de Juan en este momento

= [3 × (La edad de José en este momento)] - 16

Juan's age right now = [3×(Jose's age right now)] - 16

Step-by-step explanation:

Deje que la edad de José en este momento sea x.

Entonces la edad de Juan ahora es y.

En 16 años,

La edad de José = x + 16

Edad de Juan = y + 16

En 16 años, Juan tendrá 3 veces la edad que tiene José ahora

(y + 16) = 3x

Entonces, la edad de Juan ahora y la relación correcta entre las edades de Juan y José en este momento es y = 3x - 16

¡¡¡Espero que esto ayude!!!

English Translation

In 16 years, Juan will be 3 times the age that José is now. Indicate which approaches are correct.

Solution

Let José's age right now be x.

Then Juan's age right now be y.

In 16 years time,

Jose's age = x + 16

Juan's age = y + 16

In 16 years, Juan will be 3 times the age that José is now

(y + 16) = 3x

So, Juan's age now and the correct relationship between Juan and Jose's ages right now is

y = 3x - 16

Hope this Helps!!!

You might be interested in
The school basketball team won the game. The finals score was a two digit number. The digit in the tens place was the number tha
8_murik_8 [283]

Answer:

1? Because its the only number beetween 2 and 0.

5 0
3 years ago
PLSSS HELP ME ON THIS
stiks02 [169]
1. True
2. False
3. True
When ordered for location 1, the values are 34,52,85,86,100 with the median is 85 because it is in the middle of the other values. True

The range of location 2 is from 19 to 65 base don data shown, False

The median for location 2 is (20,29) which is smaller than the 85 for location 1 so location 1 had more participants if based on the median measurement. True

3 0
3 years ago
Suppose y varies inversely with x. Write an equation if y=-3 when x=17
vodka [1.7K]

Answer:

y = -51 ÷ x

Step-by-step explanation:

The standard format of a inversely proportional equation goes by the format of y = k ÷ x. The question asks us to write an equation if y = -3 when x = 17 and y varies inversely with x.

So we substitute the values y = -3 and x = 17 in the equation y = k ÷ x

K = constant, we have to work this out

-3 = k ÷ 17

-3 × 17 = k

k = -3 × 17

k = -51

k = -51 So then we put this back into the original y = k ÷ x to find our final equation which is y = -51 ÷ x

6 0
3 years ago
1. 2 qt =<br> pt please help me with this I need so much help
Olegator [25]
Can you give more information
3 0
3 years ago
Let y 00 + by0 + 2y = 0 be the equation of a damped vibrating spring with mass m = 1, damping coefficient b &gt; 0, and spring c
stira [4]

Answer:

Step-by-step explanation:

Given that:    

The equation of the damped vibrating spring is y" + by' +2y = 0

(a) To convert this 2nd order equation to a system of two first-order equations;

let y₁ = y

y'₁ = y' = y₂

So;

y'₂ = y"₁ = -2y₁ -by₂

Thus; the system of the two first-order equation is:

y₁' = y₂

y₂' = -2y₁ - by₂

(b)

The eigenvalue of the system in terms of b is:

\left|\begin{array}{cc}- \lambda &1&-2\ & -b- \lambda \end{array}\right|=0

-\lambda(-b - \lambda) + 2 = 0 \ \\ \\\lambda^2 +\lambda b + 2 = 0

\lambda = \dfrac{-b \pm \sqrt{b^2 - 8}}{2}

\lambda_1 = \dfrac{-b + \sqrt{b^2 -8}}{2} ;  \ \lambda _2 = \dfrac{-b - \sqrt{b^2 -8}}{2}

(c)

Suppose b > 2\sqrt{2}, then  λ₂ < 0 and λ₁ < 0. Thus, the node is stable at equilibrium.

(d)

From λ² + λb + 2 = 0

If b = 3; we get

\lambda^2 + 3\lambda + 2 = 0 \\ \\ (\lambda + 1) ( \lambda + 2 ) = 0\\ \\ \lambda = -1 \ or   \  \lambda = -2 \\ \\

Now, the eigenvector relating to λ = -1 be:

v = \left[\begin{array}{ccc}+1&1\\-2&-2\\\end{array}\right] \left[\begin{array}{c}v_1\\v_2\\\end{array}\right] = \left[\begin{array}{c}0\\0\\\end{array}\right]

\sim v = \left[\begin{array}{ccc}1&1\\0&0\\\end{array}\right] \left[\begin{array}{c}v_1\\v_2\\\end{array}\right] = \left[\begin{array}{c}0\\0\\\end{array}\right]

Let v₂ = 1, v₁ = -1

v = \left[\begin{array}{c}-1\\1\\\end{array}\right]

Let Eigenvector relating to  λ = -2 be:

m = \left[\begin{array}{ccc}2&1\\-2&-1\\\end{array}\right] \left[\begin{array}{c}m_1\\m_2\\\end{array}\right] = \left[\begin{array}{c}0\\0\\\end{array}\right]

\sim v = \left[\begin{array}{ccc}2&1\\0&0\\\end{array}\right] \left[\begin{array}{c}m_1\\m_2\\\end{array}\right] = \left[\begin{array}{c}0\\0\\\end{array}\right]

Let m₂ = 1, m₁ = -1/2

m = \left[\begin{array}{c}-1/2 \\1\\\end{array}\right]

∴

\left[\begin{array}{c}y_1\\y_2\\\end{array}\right]= C_1 e^{-t}  \left[\begin{array}{c}-1\\1\\\end{array}\right] + C_2e^{-2t}  \left[\begin{array}{c}-1/2\\1\\\end{array}\right]

So as t → ∞

\mathbf{ \left[\begin{array}{c}y_1\\y_2\\\end{array}\right]=  \left[\begin{array}{c}0\\0\\\end{array}\right] \ \  so \ stable \ at \ node \ \infty }

5 0
2 years ago
Other questions:
  • What’s the answer ???
    9·1 answer
  • Calculo el area del búmeran tomando en cuenta que su diámetro es 20 cm
    13·1 answer
  • What is equivalent to 4/4?
    12·2 answers
  • Look at attachment 10 POINTS!!!
    5·1 answer
  • What is the answer to this 4 1/3 x 6 please help
    12·1 answer
  • Find the slope of the line.
    5·1 answer
  • Does anyone know the answers to B and C
    9·1 answer
  • I need help please ASAP?!!!!
    5·1 answer
  • Find the value of x and the value of y.
    14·1 answer
  • Select all the points that are on the graph of the line y=1/2x+5
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!