Answer:
a) ∫_{-6}^{6} ∫_{0}^{36} ∫_{x²}^{36} (-y) dy dz dx
b) ∫_{0}^{36} ∫_{-6}^{6} ∫_{x²}^{36} (-y) dy dx dz
c) ∫_{0}^{36} ∫_{x²}^{36} ∫_{-6}^{6} (-y) dx dy dz
e) ∫_{x²}^{36} ∫_{-6}^{6} ∫_{0}^{36} (-y) dz dx dy
Step-by-step explanation:
We write the equivalent integrals for given integral,
we get:
a) ∫_{-6}^{6} ∫_{0}^{36} ∫_{x²}^{36} (-y) dy dz dx
b) ∫_{0}^{36} ∫_{-6}^{6} ∫_{x²}^{36} (-y) dy dx dz
c) ∫_{0}^{36} ∫_{x²}^{36} ∫_{-6}^{6} (-y) dx dy dz
e) ∫_{x²}^{36} ∫_{-6}^{6} ∫_{0}^{36} (-y) dz dx dy
We changed places of integration, and changed boundaries for certain integrals.
Well he earned $50 this week and $25 the following week, so 2/5 of $75 is $30
Step-by-step explanation:
(example)
Think of it this way:
If joe caught 1 fish only
and bonita caught four more than joe
that means that she caught 5 fish in total.
(for the question)
This means that Bonita caught four more fish than Joe.
j + 4 = bonita
j = joe
The Arithmetic Mean and Median of the given set of data ( 2, 5, 13, 15, 19, 21 ) are 12.5 and 14 respectively.
<h3>What is Arithmetic mean?</h3>
Arithmetic mean is simply the average of a given set numbers. It is determined by dividing the sum of a given set number by their number of appearance.
Mean = Sum total of the number ÷ n
Where n is number of numbers
Median is the middle number in the data set.
Given the sets;
Mean = Sum total of the number ÷ n
Mean = (2 + 5 + 13 + 15 + 19 + 21) ÷ 6
Mean = 75 ÷ 6
Mean = 12.5
Median is the middle number in the data set.
Median = ( 13 + 15 ) ÷ 2
Median = 14
Therefore, the Arithmetic Mean and Median of the given set of data ( 2, 5, 13, 15, 19, 21 ) are 12.5 and 14 respectively.
Learn more about arithmetic mean here: brainly.com/question/13000783
#SPJ1