You can write any decimal as a precent by moving the decimal 2 places to the right so
0.51 = 51%
5.1% < 51%
5.1% < 0.51
or, any precent can be written as a decimal by moving the decimal points two point to the left so
5.1% = 0.051
0.051 < 0.51
5.1% < 0.51
Answer:
Step-by-step explanation:
Find the area of the base
The base is a square.
The formula is Area = s^2
s = 1.5
Area = 1.5^2
Area = 2.25 sq cm.
Area of 1 triangle
h = 2.4
b = 1.5
Area = 1/2 * b * h
Area = 1/2 * 1.5 * 2.4
Area = 1.8 cm^2
Area of 4 triangles
Area = 4 * area of 1 triangle
Area = 4 * 1.8
Area = 7.2
Total Area = 2.25 + 7.2 = 9.45 cm^2
<span>cotx = (cosx)/(sinx)
Where is this function not defined?
i.e. where is sin(x)=0?
Because at this point, cotx will be undefined because you cannot divide by zero. So find all points from 0 to 2 pi where sinx is 0.</span>
We have
![\sqrt[k]{\Gamma\left(\dfrac1k\right) \Gamma\left(\dfrac2k\right) \cdots \Gamma\left(\dfrac kk\right)} \\\\ = \exp\left(\dfrac{\ln\left(\Gamma\left(\dfrac1k\right) \Gamma\left(\dfrac2k\right) \cdots \Gamma\left(\dfrac kk\right)\right)}k\right) \\\\ = \exp\left(\dfrac{\ln\left(\Gamma\left(\dfrac1k\right)\right)+\ln\left( \Gamma\left(\dfrac2k\right)\right)+ \cdots +\ln\left(\Gamma\left(\dfrac kk\right)\right)}k\right)](https://tex.z-dn.net/?f=%5Csqrt%5Bk%5D%7B%5CGamma%5Cleft%28%5Cdfrac1k%5Cright%29%20%5CGamma%5Cleft%28%5Cdfrac2k%5Cright%29%20%5Ccdots%20%5CGamma%5Cleft%28%5Cdfrac%20kk%5Cright%29%7D%20%5C%5C%5C%5C%20%3D%20%5Cexp%5Cleft%28%5Cdfrac%7B%5Cln%5Cleft%28%5CGamma%5Cleft%28%5Cdfrac1k%5Cright%29%20%5CGamma%5Cleft%28%5Cdfrac2k%5Cright%29%20%5Ccdots%20%5CGamma%5Cleft%28%5Cdfrac%20kk%5Cright%29%5Cright%29%7Dk%5Cright%29%20%5C%5C%5C%5C%20%3D%20%5Cexp%5Cleft%28%5Cdfrac%7B%5Cln%5Cleft%28%5CGamma%5Cleft%28%5Cdfrac1k%5Cright%29%5Cright%29%2B%5Cln%5Cleft%28%20%5CGamma%5Cleft%28%5Cdfrac2k%5Cright%29%5Cright%29%2B%20%5Ccdots%20%2B%5Cln%5Cleft%28%5CGamma%5Cleft%28%5Cdfrac%20kk%5Cright%29%5Cright%29%7Dk%5Cright%29)
and as k goes to ∞, the exponent converges to a definite integral. So the limit is
![\displaystyle \lim_{k\to\infty} \sqrt[k]{\Gamma\left(\dfrac1k\right) \Gamma\left(\dfrac2k\right) \cdots \Gamma\left(\dfrac kk\right)} \\\\ = \exp\left(\lim_{k\to\infty} \frac1k \sum_{i=1}^k \ln\left(\Gamma\left(\frac ik\right)\right)\right) \\\\ = \exp\left(\int_0^1 \ln\left(\Gamma(x)\right)\, dx\right) \\\\ = \exp\left(\dfrac{\ln(2\pi)}2}\right) = \boxed{\sqrt{2\pi}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Clim_%7Bk%5Cto%5Cinfty%7D%20%5Csqrt%5Bk%5D%7B%5CGamma%5Cleft%28%5Cdfrac1k%5Cright%29%20%5CGamma%5Cleft%28%5Cdfrac2k%5Cright%29%20%5Ccdots%20%5CGamma%5Cleft%28%5Cdfrac%20kk%5Cright%29%7D%20%5C%5C%5C%5C%20%3D%20%5Cexp%5Cleft%28%5Clim_%7Bk%5Cto%5Cinfty%7D%20%5Cfrac1k%20%5Csum_%7Bi%3D1%7D%5Ek%20%5Cln%5Cleft%28%5CGamma%5Cleft%28%5Cfrac%20ik%5Cright%29%5Cright%29%5Cright%29%20%5C%5C%5C%5C%20%3D%20%5Cexp%5Cleft%28%5Cint_0%5E1%20%5Cln%5Cleft%28%5CGamma%28x%29%5Cright%29%5C%2C%20dx%5Cright%29%20%5C%5C%5C%5C%20%3D%20%5Cexp%5Cleft%28%5Cdfrac%7B%5Cln%282%5Cpi%29%7D2%7D%5Cright%29%20%3D%20%5Cboxed%7B%5Csqrt%7B2%5Cpi%7D%7D)
Answer:
c. -0.8
Step-by-step explanation:
From this graph, I estimated the values for the following ordered pairs (1, -2.5) and (4, -4.75)
We can set up the equation for the average rate of change like this

This simplifies to

Which simplifies further to

This is closes to c. -0.8