<span>Here we are asked to know the type of bond
between a glycosidic bond. A glycosidic bond is a type of bond that
exists between a carbohydrate molecule to another carbohydrate molecule. A
glycosidic bond creates between two monosaccharides can also be called as an
ether bond.</span>
Answer:
5
Explanation:
Firstly, we convert what we have to percentage compositions.
There are two parts in the molecule, the sulphate part and the water part.
The percentage compositions is as follows:
Sulphate- (103.74)/(103.74 + 58.55) × 100% = apprx 64%
The water part = 100 - 64 = 36%
Now, we divide the percentages by the molar masses.
For the CuSO4 molar mass is 64 + 32 + 4(16) = 160g/mol
For the H2O = 2(1) + 16 = 18g/mol
Now we divide the percentages by these masses
Sulphate = 64/160 = 0.4
Water = 36/18 = 2
The ratio is thus 0.4:2 = 1:5
Hence, there are 5 water molecules.
Answer: The electron arrangement for gallium is:
Ar 3d10 4s2 4p1
The answers are low concentrated (dilute) and high concentrated respectively.
As the low concentrated salt solution has a higher water potential than that of the high concentrated salt solution, water molecules will flow from the region of higher water potential to the region of lower water potential, thus from the dilute salt solution to the high concentrated salt solution. This is due to the movement called osmosis. Note that osmosis also requires water to flow through a differentially permeable membrane, which means the membrane can allow certain substances (not all) to go in or out. If the differentially permeable membrane is not present, the movement of water molecules may be regarded as diffusion.
Therefore, the answers for the blanks are low concentrated and high concentrated.