Principal quantum number is n = 2, principal quantum number gives the energy shells electrons reside in,
angular momentum quantum number , these are the number of subshells and gives how many subshells are there in energy shells, values for l range from 0 to n-1
magnetic quantum number -m- gives the specific orbital in the subshells and their orientation.
spin quantum number gives the spin of the electrons.
in this case, n = 2
the types of subshells in n=2 are 0 and 1
0 - s subshell
1 - p subshell
the specific number of orbitals are given by -l to +l
when l = 1
then -1, 0 and +1
therefore there are 3 orbitals in p subshell and orbitals are in 3 orientations
each orbital can hold a maximum of 2 electrons,
since there are 3 orbitals each holding 6, there are 6 electrons to which these quantum numbers are the same
answer is 6
Answer:
See explanation
Explanation:
On the pH scale acidity ranges from pH values of 0-6.9. Natural rain water is slightly acidic due to the presence of carbon dioxide in the atmosphere which is an anhydride of carbonic acid.
CO2(g) + H2O(l) -------> H2CO3(aq)
B. The equations that turn sulfur to sulfuric acid are;
S(l) + O2(g) -----> SO2(g)
2SO2(l) + O2(g) -----> 2SO3(g)
SO3(g) + H2SO4(l) -----> H2S2O7(l)
H2S2O7(l) + H2O(l) ----> 2H2SO4(l)
-
At pH 6, H^+ concentration = 1 * 10^-6 M
At pH 2, H^+ concentration = 1 * 10^-2 M
Hence;
1 * 10^-2/1 * 10^-6
= 10^4 times more acidic
The reaction will come to an end if all the reactants are used up. The reaction's limiting reactant is reactant B.
Limiting Reactant: The limiting reactant is the one that is consumed first and sets a limit on the quantity of product(s) that can be obtained.
This reactant is the one that restricts the production of products throughout the reaction. The reaction will come to an end if all of the reactants are used up.
surplus reactant
This is the limiting reactant that is present in excess and reacts with it all. Oxygen in the surroundings, as an illustration.
When all of the reactant B has been utilized, the reaction ends.
Learn more about limiting reactants here brainly.com/question/6751172
#SPJ4.