The present value (PV) of a loan for n years at r% compounded t times a year where there is equal P periodic payments is given by:

Given that <span>Beth
is taking out a loan of PV = $50,000 to purchase a new home for n = 25 years at an interest rate of r = 14.25%. Since she is making the payment monthly, t = 12.
Her monthly payment is given by:

Therefore, her monthly payment is about $611.50
</span>
P(8 or 12) = 1/6
P(not 8 or 12 = 5/6
Let the expected points fro one roll be X.

The answer is -(1/6) points.
Answer:
![[p-|p|*10^{-3} \, , \, p+|p|* 10^-3]](https://tex.z-dn.net/?f=%5Bp-%7Cp%7C%2A10%5E%7B-3%7D%20%5C%2C%20%2C%20%5C%2C%20p%2B%7Cp%7C%2A%2010%5E-3%5D)
Step-by-step explanation
The relative error is the absolute error divided by the absolute value of p. for an approximation p*, the relative error is
r = |p*-p|/|p|
we want r to be at most 10⁻³, thus
|p*-p|/|p| ≤ 10⁻³
|p*-p| ≤ |p|* 10⁻³
therefore, p*-p should lie in the interval [ - |p| * 10⁻³ , |p| * 10⁻³ ], and as a consecuence, p* should be in the interval [p - |p| * 10⁻³ , p + |p| * 10⁻³ ]
Answer:
x = 136/11
, y = 68/11
Step-by-step explanation:
Solve the following system:
{6 x - y = 68
2 y = x
Hint: | Choose an equation and a variable to solve for.
In the second equation, look to solve for x:
{6 x - y = 68
2 y = x
Hint: | Reverse the equality in 2 y = x in order to isolate x to the left hand side.
2 y = x is equivalent to x = 2 y:
{6 x - y = 68
x = 2 y
Hint: | Perform a substitution.
Substitute x = 2 y into the first equation:
{11 y = 68
x = 2 y
Hint: | Choose an equation and a variable to solve for.
In the first equation, look to solve for y:
{11 y = 68
x = 2 y
Hint: | Solve for y.
Divide both sides by 11:
{y = 68/11
x = 2 y
Hint: | Perform a back substitution.
Substitute y = 68/11 into the second equation:
{y = 68/11
x = 136/11
Hint: | Sort results.
Collect results in alphabetical order:
Answer: {x = 136/11
, y = 68/11