1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
stiv31 [10]
3 years ago
6

Rewrite in simplest terms: 10k-5(-6k+4)

Mathematics
1 answer:
Fittoniya [83]3 years ago
7 0

Answer:

Step-by-step explanation:

You might be interested in
-3y+1/3=-5/6y-5/2 what does y equal
kotykmax [81]

Answer:

17/13

Step-by-step explanation:

- 3y +  \frac{1}{3}  =  -  \frac{5}{6}y -  \frac{5}{2}  \\  -  \frac{18}{6}y  +  \frac{2}{6}  =  -  \frac{5}{6} y -  \frac{15}{6}  \\   \frac{2}{6}  +  \frac{15}{6}  =  -  \frac{5}{6} y +  \frac{18}{6} y \\  \frac{17}{6}  =  \frac{13}{6} y \\  \frac{6}{13}  \times  \frac{17}{6}  = y \\  \frac{17}{13}  = y

8 0
2 years ago
Which of the following correctly describes the interval shown?
adoni [48]
B is the correct one
5 0
3 years ago
if y is the midpoint of xz, y is located at (3,-1), and z is located at (11,-5), find the coordinates of x
svlad2 [7]

\bf ~~~~~~~~~~~~\textit{middle point of 2 points } \\\\ X(\stackrel{x_1}{x}~,~\stackrel{y_1}{y})\qquad Z(\stackrel{x_2}{11}~,~\stackrel{y_2}{-5}) \qquad \left(\cfrac{ x_2 + x_1}{2}~~~ ,~~~ \cfrac{ y_2 + y_1}{2} \right) \\\\\\ \left(\cfrac{11+x}{2}~~,~~\cfrac{-5+y}{2} \right)=\stackrel{\stackrel{midpoint}{y}}{(3,-1)}\implies \begin{cases} \cfrac{11+x}{2}=3\\[1em] 11+x=6\\ \boxed{x=-5}\\ \cline{1-1} \cfrac{-5+y}{2}=-1\\[1em] -5+y=-2\\ \boxed{y=3} \end{cases}

7 0
3 years ago
Read 2 more answers
Factor the polynomial F(x) =x^3-x^2-4x+4 completely.
Norma-Jean [14]

Answer:

Step-by-step explanation:

PART 1:

Possible roots by noticing the coefficient of first term:

x = 1, -1

PART 2:

1 | 1  -1  -4   4

 <u>      1   0  -4</u>

   1   0  -4  0

The remainder is zero, hence one factor is (x-1)

PART 3:

x^3-x^2-4x+4=(x^2-4)(x-1)\\\\x^3-x^2-4x+4=(x+2)(x-2)(x-1)

PART 4:

f(x)=(x+2)(x-2)(x-1)\\\\=(x^2-4)(x-1)\\\\=x^3-4x-x^2+4\\\\=x^3-x^2-4x+4

6 0
3 years ago
<img src="https://tex.z-dn.net/?f=%5Clim_%7Bx%5Cto%20%5C%200%7D%20%5Cfrac%7B%5Csqrt%7Bcos2x%7D-%5Csqrt%5B3%5D%7Bcos3x%7D%20%7D%7
salantis [7]

Answer:

\displaystyle  \lim_{x \to 0} \frac{\sqrt{cos(2x)} - \sqrt[3]{cos(3x)}}{sin(x^2)} = \frac{1}{2}

General Formulas and Concepts:

<u>Calculus</u>

Limits

Limit Rule [Variable Direct Substitution]:                                                                     \displaystyle \lim_{x \to c} x = c

L'Hopital's Rule

Differentiation

  • Derivatives
  • Derivative Notation

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

We are given the limit:

\displaystyle  \lim_{x \to 0} \frac{\sqrt{cos(2x)} - \sqrt[3]{cos(3x)}}{sin(x^2)}

When we directly plug in <em>x</em> = 0, we see that we would have an indeterminate form:

\displaystyle  \lim_{x \to 0} \frac{\sqrt{cos(2x)} - \sqrt[3]{cos(3x)}}{sin(x^2)} = \frac{0}{0}

This tells us we need to use L'Hoptial's Rule. Let's differentiate the limit:

\displaystyle  \lim_{x \to 0} \frac{\sqrt{cos(2x)} - \sqrt[3]{cos(3x)}}{sin(x^2)} = \displaystyle  \lim_{x \to 0} \frac{\frac{-sin(2x)}{\sqrt{cos(2x)}} + \frac{sin(3x)}{[cos(3x)]^{\frac{2}{3}}}}{2xcos(x^2)}

Plugging in <em>x</em> = 0 again, we would get:

\displaystyle \lim_{x \to 0} \frac{\frac{-sin(2x)}{\sqrt{cos(2x)}} + \frac{sin(3x)}{[cos(3x)]^{\frac{2}{3}}}}{2xcos(x^2)} = \frac{0}{0}

Since we reached another indeterminate form, let's apply L'Hoptial's Rule again:

\displaystyle \lim_{x \to 0} \frac{\frac{-sin(2x)}{\sqrt{cos(2x)}} + \frac{sin(3x)}{[cos(3x)]^{\frac{2}{3}}}}{2xcos(x^2)} = \lim_{x \to 0} \frac{\frac{-[cos^2(2x) + 1]}{[cos(2x)]^{\frac{2}{3}}} + \frac{cos^2(3x) + 2}{[cos(3x)]^{\frac{5}{3}}}}{2cos(x^2) - 4x^2sin(x^2)}

Substitute in <em>x</em> = 0 once more:

\displaystyle \lim_{x \to 0} \frac{\frac{-[cos^2(2x) + 1]}{[cos(2x)]^{\frac{2}{3}}} + \frac{cos^2(3x) + 2}{[cos(3x)]^{\frac{5}{3}}}}{2cos(x^2) - 4x^2sin(x^2)} = \frac{1}{2}

And we have our final answer.

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Limits

6 0
3 years ago
Other questions:
  • There are 20 blueberry muffins and 15 bran muffins in a bakery.
    12·2 answers
  • What number should be placed in the box to help complete the division calculation?
    10·1 answer
  • Jennifer spent $150 at a craft fair to rent a booth. She sells knit blankets for $20 each. How many blankets does Jennifer need
    12·2 answers
  • O(●︿●)o ! <br> -1/3 x (-3/7)
    9·2 answers
  • Ms. Canton has a book case. On three of the shelves there are the same amount of books. On another shelf there are four of her f
    14·2 answers
  • What is the area of a rectangle whose side lengths are o and g?
    12·1 answer
  • I need help what is the answer will mark brainliest please help
    15·1 answer
  • Please tell me an easy explanation on how to answer this correctly.
    8·2 answers
  • A rectangle is 19 feet long and 3 feet wide. Find its area,
    11·1 answer
  • I don’t know how to solve for Q.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!