Using row 4:
<span>coefficients are: 1, 4, 6, 4, 1 </span>
<span>a^4 + a^3b + a^2b^2 + ab^3 + b^4 </span>
<span>Now adding the coefficients: </span>
<span>1a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + 1b^4 </span>
<span>Substitute a and b: </span>
<span>a = 4x </span>
<span>
b = -3y </span>
<span>1(4x)^4 + 4(4x)^3(-3y) + 6(4x)^2(-3y)^2 + 4(4x)(-3y)^3 + 1(-3y)^4 </span>
<span>Now simplify the above: </span>
<span>256x^4 - 768x^3y + 864x^2y^2 - 432xy^3 + 81y^4 </span>
Answer:
1. (i) 7, 21, 63, 189
(ii) 20, 10, 5, 2.5
2. (i) n²+n (where n = 1, 2, 3, ..)
(ii) 8/(10^n) (where n = 1, 2, 3, ..)
(iii) 1/(n+1) (where n = 1, 2, 3, ..)
The domain of F(x) is all real numbers.
This is due to the fact that the function has no undefined points or domain constraints.
Answer:
d1=2A/d2
d2=2A/d1
Step-by-step explanation:
The options of this question are:
1. d₁=2Ad₂
2. d₁= 2A/d₂
3. d₂= d₁/2A
4. d₁= 2A/d₂
5. d₂= 2Ad₁
Given:
A=1/2(d1*d2)
Multiply both sides by 2
We have,
2A=d1*d2
Divide both sides by d2
2A/d2=d1*d2/d2
2A/d2=d1
Therefore, d1=2A/d2
Similarly, from the previous equation
2A=d1*d2
Divide both sides by d1
2A/d1=d1*d2/d1
2A/d1=d2
Therefore,
d2=2A/d1
Options
2. d₁= 2A/d₂
4. d₁= 2A/d₂