Answer:
55.8W
Explanation:
P= V^2/R
R= V^2/P
For series connection
Req= R1+ R2= V^2/310 + V^2/180
R=V^2/P= V^2/310 + V^2/180
But V^2 will cancel out
P= 1/(1/310 + 1/180)
P= 55.8W
It should be A.
A ball bouncing is moving so if it’s moving that means it has kinetic energy. It also has potential energy because when it hits the floor it kind of stops so it has potential.
-Hope this helps.
<span>(a)
Taking the angle of the pitch, 37.5°, and the particle's initial velocity, 18.0 ms^-1, we get:
18.0*cos37.5 = v_x = 14.28 ms^-1, the projectile's horizontal component.
(b)
To much the same end do we derive the vertical component:
18.0*sin37.5 = v_y = 10.96 ms^-1
Which we then divide by acceleration, a_y, to derive the time till maximal displacement,
10.96/9.8 = 1.12 s
Finally, doubling this value should yield the particle's total time with r_y > 0
<span>2.24 s
I hope my answer has come to your help. Thank you for posting your question here in Brainly.
</span></span>
The surface is frictionless, so there is no frictional force acting on the ball. There are no other forces acting on the ball in the horizontal direction, so it's a uniform motion with constant speed. Therefore, the velocity of the ball will remain the same for the entire duration of the motion, and so after 5 seconds the velocity is still 15 m/s.