(Mass does not affect the pendulum's swing. The longer the length of string, the farther the pendulum falls; and therefore, the longer the period, or back and forth swing of the pendulum. The greater the amplitude, or angle, the farther the pendulum falls; and therefore, the longer the period.)
I attached the missing picture.
The force of seat acting on the child is a reaction the force of child pressing down on the seat. This is the third Newton's law. The force of a child pressing down the seat and the force of the seat pushing up on the child are the same.
There two forces acting on the child. The first one is the gravitational force and the second one is centrifugal force. In this example, the force of gravity is always pulling down, but centrifugal force always acts away from the center of circular motion.
Part AFor point A we have:

In this case, the forces are aligned, centrifugal is pointing up and gravitational is pulling down.
Part BAt the point, B situation is a bit more complicated. In this case force of gravity and centrifugal force are not aligned. We have to look at y components of this forces, y-axis, in this case, is just pointing upward.
Part CThe child will stay in place at point A when centrifugal force and force of gravity are in balance:
A compound
Explanation:
A compound machine is the combination of two or more simple machines.
An example is bicycle.
- A simple machine is a device that is used to increase the magnitude of force.
- It is a basic mechanical unit.
- Examples are inclined planes, lever systems, wheel and axle.
- A compound machine is a combination of these simple machines.
learn more:
lever brainly.com/question/5352966
#learnwithBrainly
Answer:
The value of g = 0.6168 m/s².
Explanation:
Given that,
On a planet X,
Length of the pendulum(L) = 0.25 meters,
Time period of the pendulum(T) = 4 seconds.
We have to find the 'g' value on the planet.
The 'g' value on a planet can be found by a pendulum with help of the formula,
T = 2π ×
From this, g = 4π² × 
Using the above formula and substituting the values,we get,
g = 0.6168 m/s².