Answer:
0.366×10^{-3} / s
Explanation:
θ = θmax e^{-bt/2m}
Given that
θ = 5.50°
θmax = 15.0°
So that we have
ln (θ / θmax) = -bt /2m
= - ln(5.50°/ 15.0°) / 1000s = b /2m
= b / 2m = 0.366×10^{-3} / s
Answer:
This air being forced out causing the air pressure inside to be much lower than that on the outside. As higher air pressure always pushes, it keeps the two plungers together.
Hope that helps. x
Answer:
in left
Explanation:
Hope it will help
<em>p</em><em>l</em><em>e</em><em>a</em><em>s</em><em>e</em><em> </em><em>m</em><em>a</em><em>r</em><em>k</em><em> </em><em>a</em><em>s</em><em> </em><em>a</em><em> </em><em>b</em><em>r</em><em>a</em><em>i</em><em>n</em><em>l</em><em>i</em><em>s</em><em>t</em><em>s</em>
Answer:
If we use the equation for the transformation of velocities for moving frames:
v' = (v - u) / (1 - u * v / c^2) where we measure the speed of v' approaching from the left where v is in a frame moving at -u towards v'
v' = (.6 c - (-.6 c)) / (1 - (-.6 c) * .6 c / c^2) = 1.2 c / (1 + .6 * .6)
or v' = 1.2 c / (1 + .36) = .88 c
v is approaching from the left at .6 c in the reference frame and the other frame approaches from the right at -.6 c with speed u (-.6 c) and we measure the speed of v as seen in the frame moving to the left
Answer:
Time of flight A is greatest
Explanation:
Let u₁ , u₂, u₃ be their initial velocity and θ₁ , θ₂ and θ₃ be their angle of projection. They all achieve a common highest height of H.
So
H = u₁² sin²θ₁ /2g
H = u₂² sin²θ₂ /2g
H = u₃² sin²θ₃ /2g
On the basis of these equation we can write
u₁ sinθ₁ =u₂ sinθ₂=u₃ sinθ₃
For maximum range we can write
D = u₁² sin2θ₁ /g
1.5 D = u₂² sin2θ₂ / g
2 D =u₃² sin2θ₃ / g
1.5 D / D = u₂² sin2θ₂ /u₁² sin2θ₁
1.5 = u₂ cosθ₂ /u₁ cosθ₁ ( since , u₁ sinθ₁ =u₂ sinθ₂ )
u₂ cosθ₂ >u₁ cosθ₁
u₂ sinθ₂ < u₁ sinθ₁
2u₂ sinθ₂ / g < 2u₁ sinθ₁ /g
Time of flight B < Time of flight A
Similarly we can prove
Time of flight C < Time of flight B
Hence Time of flight A is greatest .