Answer:
11.3 m/s
Explanation:
KE₁ = KE₂
½m₁v₁² = ½m₂v₂²
½ (2 kg) v² = ½ (4 kg) (8 m/s)²
v ≈ 11.3 m/s
Answer:
I'm not 100% sure tbh but the only thing I think makes sense to represent vibration would be frequency which is measure in Hertz (Hz)
Explanation:
Rearranging formulas is all about simple algebra rules. Just like when solving for x in an equation, you're just isolating whichever variable you want. I'll work this one out for you and hopefully it'll help, but if you need more explanation, then feel free to comment!
D = ViT + 0.5at² Subtract ViT from both sides
D - ViT = 0.5at² Divide both sides by 0.5t²
I wrote this step out a little more to show how your fraction will cancel
= a I like to flip these around so the single variable is on the right
a = 
Answer:
Kinetic energy = (1/2) (mass) (speed²)
Original KE = (1/2) (1430 kg) (7.5 m/s)² = 40,218.75 joules
Final KE = (1/2) (1430 kg) (11.0 m/s)² = 86,515 joules
Work done during the acceleration = (40218.75 - 86515) = 46,296.25 joules
Power = work/time = 46,296.25 joules / 9.3 sec = 4,978.1 watts .
Explanation:
Dont report my answer please
The train would need the greatest amount of force due to weight! If you think of it, a baseball won't need much force to stop it, but if you have a heavy train, it will need excessive force to stop the train. The answer would be #3
I hope this answer helps!
Sorry if it doesn't make sense, as I don't know that much about physics! I am just thinking of what makes sense.