First
let us imagine the projectile launched at initial velocity V and at angle
θ relative to the horizontal. (ignore wind resistance)
Vertical component y:
The
initial vertical velocity is given as Vsinθ
The moment the projectile reaches the maximum
height of h, the vertical velocity
will be 0, therefore the time t taken to attain this maximum height is:
h = Vsinθ - gt
0 = Vsinθ - gt
t = (Vsinθ)/g
where
g is acceleration due to gravity
Horizontal component x:
The initial horizontal velocity is given as Vcosθ. However unlike
the vertical component, this horizontal velocity remains constant because this is unaffected by gravity. The time to travel the
horizontal distance D is twice the value of t times the horizontal velocity.
D = Vcosθ*[(2Vsinθ)/g]
D = (2V²sinθ cosθ)/g
D = (V²sin2θ)/g
In order for D (horizontal distance) to be
maximum, dD/dθ = 0
That is,
2V^2 cos2θ / g = 0
And since 2V^2/g must not be equal to zero, therefore cos(2θ) = 0
This is true when 2θ = π/2 or θ = π/4
Therefore it is now<span> shown that the maximum horizontal travelled is attained when
the launch angle is π/4 radians, or 45°.</span>
<u>Hello and Good Morning/Afternoon</u>:
<em>Original Question: C₂H₅OH + __O₂ → __CO₂ + __ H₂O</em>
<u>To balance this equation</u>:
⇒ must ensure that there is an equal number of elements on both sides of the equation at all times
<u>Let's start balancing:</u>
- On the left side of the equation, there are 2 carbon molecule
⇒ but only so far one on the right side
C<em>₂H₅OH + __O₂ → 2CO₂ + __ H₂O</em>
- On the left side of the equation, there are 6 hydrogen molecules
⇒ but only so far two on the right side
C<em>₂H₅OH + __O₂ → 2CO₂ + 3H₂O</em>
- On the right side of the equation, there are 7 oxygen molecules
⇒ but only so far three on the left side
C<em>₂H₅OH + 3O₂ → 2CO₂ + 3H₂O</em>
<u>Let's check and make sure we got the answer:</u>
C<em>₂H₅OH + 3O₂ → 2CO₂ + 3H₂O</em>
<em> 2 Carbon ⇔ 2 Carbon</em>
<em> 6 Hydrogen ⇔ 6 Hydrogen</em>
<em> 7 Oxygen ⇔ 7 oxygen</em>
<u>Thefore the coefficients in order are</u>:
⇒ 1, 3, 2, 3
<u>Answer: 1,3,2,3</u>
Hope that helps!
#LearnwithBrainly<em> </em>
Answer:
There isnt enough in your question to answer the question bro, like we need a picture or something bro.
Explanation:
Answer:
563.86 N
Explanation:
We know the buoyant force F = weight of air displaced by the balloon.
F = ρgV where ρ = density of air = 1.29 kg/m³, g = acceleration due to gravity = 9.8 m/s² and V = volume of balloon = 4πr/3 (since it is a sphere) where r = radius of balloon = 2.20 m
So, F = ρgV = ρg4πr³/3
substituting the values of the variables into the equation, we have
F = 1.29 kg/m³ × 9.8 m/s² × 4π × (2.20 m)³/3
= 1691.58 N/3
= 563.86 N