The Precambrian era envelopes the major bulk of the history of the Earth, beginning from the creation of the planet approx 4.5 billion years ago and terminating with the origination of composite, multicelled forms of life approximately 4 billion years after.
The Precambrian refers to the earliest of the geologic ages that are signified by the distinct layers of sedimentary rock. The Earth was about more than six hundred million years old when life started. The planet had cooled down from its native molten state, creating a solid crust and oceans formed by water vapor in the atmosphere.
At about three billion years ago, the atmosphere of the Earth was virtually devoid of oxygen. At approximately 2.4 billion years ago, oxygen was discharged from the seas as a waste product of photosynthesis by cyanobacteria. The levels of the gas slowly raised, attaining about 1 percent around two billion years ago.
Approximately 800 million years ago, the levels of oxygen attained about 21 percent and started to breathe life into more composite species. The oxygen-rich ozone layer was also created, protecting the surface of the Earth from the harmful solar radiation.
All of about is the answer
Assuming that this question makes reference to the survivability of the two moth variations, we can confirm that the brown-colored moth will be better adapted to survive in the winter months.
<h3>Why are the brown moths more likely to survive?</h3>
This has to do with their ability to better hide from predators. As described in the question, their primary predator are birds that hunt them while resting on the tree bark. This means that the white-colored moths will stand out against the dark tree bark and be easier prey for the birds. This will eventually lead to all the moths in the area being brown-colored through the process of natural selection.
Therefore, we can confirm that the brown-colored moth will be better adapted to survive in the winter months due to their ability to hide from predators.
To learn more about natural selection visit:
brainly.com/question/9830102?referrer=searchResults
Greenhouse gas emissions will continue to increase in the short term, but as new technologies are discovered and implemented by governments and industries, this may eventually reverse. Global climate may continue to warm, but once greenhouse gas emissions are lowered, this may slowly reverse. Current solutions are not yet enough to stop the increase in temperature, but some technologies on the horizon are promising, such as carbon capture and storage, solar energy, and aquaculture of biofuels. One immediate way to reduce greenhouse gas emissions is a change in lifestyle, for example, using less fuel-intensive transportation options and saving electricity.