The length of the bacteria should be written in scientific notation.
0.00365 in scientific notation = 3 × 10^-3
Given.
length of the bacteria in decimal = 0.00365 cm long
Scientific notation is written in the format x × 10ⁿ
where,
x = any number between digit 1 and 10
n = exponent (positive or negative).
- To have a negative exponent value, move decimal to the right
- To have a positive exponent value, move the decimal point to the left.
In this case, the nearest significant value is 3
So move the decimal point three times to where 3 is
That is,
0.00365 = 3.65
Since the decimal point is moved to the right 3 times, n = - 3
we have 10^-3
Therefore,
0.00365 in scientific notation = 3 × 10^-3
Read more:
brainly.com/question/10401258
Answer:
$52.92
Step-by-step explanation:
The tax is 8% of $661.50.
8% of $661.50 = 8% × $661.50 = 0.08 × $661.50 = $52.92
Answer: $52.92
Answer:
83 degrees
Step-by-step explanation:
Supplementary angles add to 180 degrees.
180 - 97 = 83 degrees
<h2>f</h2><h2>(</h2><h2>x</h2><h2>)</h2><h2>=</h2><h2>x</h2><h2>3</h2><h2>−</h2><h2>9</h2><h2>x</h2><h2>2</h2><h2>+</h2><h2>24</h2><h2>x</h2><h2>−</h2><h2>10</h2><h2>Taking first derivative of</h2><h2> </h2><h2> </h2><h2>f</h2><h2>(</h2><h2>x</h2><h2>)</h2><h2>f</h2><h2>′</h2><h2>(</h2><h2>x</h2><h2>)</h2><h2>=</h2><h2>3</h2><h2>x</h2><h2>2</h2><h2>−</h2><h2>18</h2><h2>x</h2><h2>+</h2><h2>24</h2><h2>For finding critical points substituting</h2><h2> </h2><h2>f</h2><h2>′</h2><h2>(</h2><h2>x</h2><h2>)</h2><h2>=</h2><h2>0</h2><h2>f</h2><h2>′</h2><h2>(</h2><h2>x</h2><h2>)</h2><h2>=</h2><h2>0</h2><h2> </h2><h2>⇒</h2><h2>3</h2><h2>x</h2><h2>2</h2><h2>−</h2><h2>18</h2><h2>x</h2><h2>+</h2><h2>24</h2><h2>=</h2><h2>0</h2><h2> </h2><h2>⇒</h2><h2>3</h2><h2>(</h2><h2>x</h2><h2>2</h2><h2>−</h2><h2>6</h2><h2>x</h2><h2>+</h2><h2>8</h2><h2>)</h2><h2>=</h2><h2>0</h2><h2>(</h2><h2>x</h2><h2>−</h2><h2>4</h2><h2>)</h2><h2>(</h2><h2>x</h2><h2>−</h2><h2>2</h2><h2>)</h2><h2>=</h2><h2>0</h2><h2>After solving the value of x is</h2><h2>x</h2><h2>=</h2><h2>2</h2><h2>,</h2><h2>4</h2><h2>Thus critical points at</h2><h2> </h2><h2> </h2><h2>x</h2><h2>=</h2><h2>2</h2><h2>,</h2><h2>4</h2>