The frequency of oscillation on the frictionless floor is 28 Hz.
<h3>
Frequency of the simple harmonic motion</h3>
The frequency of the oscillation is calculated as follows;
f = (1/2π)(√k/m)
where;
- k is the spring constant
- m is mass of the block
f = (1/2π)(√7580/0.245)
f = 28 Hz
Thus, the frequency of oscillation on the frictionless floor is 28 Hz.
Learn more about frequency here: brainly.com/question/10728818
#SPJ1
Answer:
Option C. 16.6 m/s
Explanation:
To round this 16.558 m/s to 3sf, we need to count the number beginning from 1. When we get to the 3rd number( ie 5), we'll examine the fourth number(i.e 5)to see if it less than five or greater. If it less than five, then we'll discard it. But if it five or greater, we'll approximate it and add it to the 3rd number.
So.
16.558 m/s = 16.6m/s to 3sf
Answer:
Magnitude = 14 metres
Direction = eastward.
Explanation:
A cross-country skier moves 36 meters eastward, then 44meters westward, and finally 22 meters eastward.
Whats the Magnitude and Direction?
The magnitude and direction will be the displacement of the cross country skier.
Let the east ward be positive and the west ward be negative.
Since the skier moves 36 meters eastward, then 44meters westward, and finally 22 meters eastward. Then, that will be:
36 - 44 + 22 = 14
Since the answer is positive, the magnitude is 14 and the direction is east ward.
Answer:
a) the distance between her and the wall is 13 m
b) the period of her up-and-down motion is 6.5 s
Explanation:
Given the data in the question;
wavelength λ = 26 m
velocity v = 4.0 m/s
a) How far from the wall is she?
Now, The first antinode is formed at a distance λ/2 from the wall, since the separation distance between the person and wall is;
x = λ/2
we substitute
x = 26 m / 2
x = 13 m
Therefore, the distance between her and the wall is 13 m
b) What is the period of her up-and-down motion?
we know that the relationship between frequency, wavelength and wave speed is;
v = fλ
hence, f = v/λ
we also know that frequency is expressed as the reciprocal of the time period;
f = 1/T
Hence
1/T = v/λ
solve for T
Tv = λ
T = λ/v
we substitute
T = 26 m / 4 m/s
T = 6.5 s
Therefore, the period of her up-and-down motion is 6.5 s
Answer:
<h2>
6.36 cm</h2>
Explanation:
Using the formula to first get the image distance
1/f = 1/u+1/v
f = focal length of the lens
u = object distance
v = image distance
Given f = 16.0 cm, u = 24.8 cm
1/v = 1/16 - 1/24.8
1/v = 0.0625-0.04032
1/v = 0.02218
v = 1/0.02218
v = 45.09 cm
To get the image height, we will us the magnification formula.
Mag = v/u = Hi/H
Hi = image height = ?
H = object height = 3.50 cm
45.09/24.8 = Hi/3.50
Hi = (45.09*3.50)/24.8
Hi = 6.36 cm
The image height is 6.36 cm