Answer:
Option 4
Explanation:
During heating actually heat transfer takes place from a body at higher temperature to a body at lower temperature and the heat transfer takes place until both attain the same temperature
Therefore heat transfer depends on the temperature of the systems
Now while comparing the thermal energies of the systems, if both the systems have same mass then the system which is at higher temperature has greater thermal energy when compared to the system which is at lower temperature
So in this case assuming that both the systems have same mass then the energy will leave the system with greater thermal energy and go into the system with less thermal energy as the system with greater thermal energy in this case will be at higher temperature and we are considering this assumption because thermal energy not only depends on temperature but also depends on mass of the system
Answer:
From the previous explanation Student No. 1 has the correct explanation
Explanation:
When the fluorescent lamp emits a light it has the shape of its emission spectrum, this light collides with the atoms of Nitrogen and excites it, so these wavelengths disappear, lacking in the spectrum seen by the observed, for which we would see an absorption spectrum
The nitrogen that was exited after a short time is given away in its emission lines, in general there are many lines, so the excitation energy is divided between the different emission lines, which must be weak
From the previous explanation Student No. 1 has the correct explanation
Answer:Orbital period =21.22hrs
Explanation:
given that
mass of earth M = 5.97 x 10^24 kg
radius of a satellite's orbit, R= earth's radius + height of the satellite
6.38X 10^6 + 3.25 X10^7 m =3.89 X 10^7m
Speed of satellite, v= 
where G = 6.673 x 10-11 N m2/kg2
V= \sqrt (6.673x10^-11 x 5.97x10^ 24)/(3.89 X 10^ 7m)
V =10,241082.2
v= 3,200.2m/s
a) Orbital period
= 
V= 
T= 2
r/ V
= 2 X 3.142 X 3.89 X 10^7m/ 3,200.2m/s
=76,385.1 s
60 sec= 1min
60mins = 1hr
76,385.1s =hr
76,385.1/3600=21.22hrs