Answer:
1932 credit hours
Step-by-step explanation:
Create a proportion
credits credits
---------- = ----------
students students
14 ?
---- = -----
1 138
14 times 138
1932 credit hours
A = b+5
ab = 3300
(b+5)b = 3300
b² +5b -3300 = 0 (quadratic formula)
b=55
a=60 (by first relation)
Step 1) Draw a dashed line through the points (0,6) and (4,7). These two points are on the line y = (1/4)x+6. To find those points, you plug in x = 0 to get y = 6. Similarly, plug in x = 4 to get y = 7. The dashed line indicates that none of the points on this line are part of the solution set.
Step 2) Draw a dashed line through (0,-1) and (1,1). These two points are on the line y = 2x-1. They are found in a similar fashion as done in step 1.
Step 3) Shade the region that is above both dashed lines. We shade above because of the "greater than" sign. This is shown in the attached image I am providing below. The red shaded region represents all of the possible points that are the solution set. Once again, any point on the dashed line is not in the solution set.
Notation
The inverse of the function f is denoted by f -1 (if your browser doesn't support superscripts, that is looks like f with an exponent of -1) and is pronounced "f inverse". Although the inverse of a function looks like you're raising the function to the -1 power, it isn't. The inverse of a function does not mean the reciprocal of a function.
Inverses
A function normally tells you what y is if you know what x is. The inverse of a function will tell you what x had to be to get that value of y.
A function f -1 is the inverse of f if
<span><span>for every x in the domain of f, f<span> -1</span>[f(x)] = x, and</span><span>for every x in the domain of f<span> -1</span>, f[f<span> -1</span>(x)] = x</span></span>
The domain of f is the range of f -1 and the range of f is the domain of f<span> -1</span>.
Graph of the Inverse Function
The inverse of a function differs from the function in that all the x-coordinates and y-coordinates have been switched. That is, if (4,6) is a point on the graph of the function, then (6,4) is a point on the graph of the inverse function.
Points on the identity function (y=x) will remain on the identity function when switched. All other points will have their coordinates switched and move locations.
The graph of a function and its inverse are mirror images of each other. They are reflected about the identity function y=x.