Answer:
area of a circle πr^2
r = 10/2 r = 5
π5^2 = 78.5
area of the square length X width
7 x 7 = 49
78.5 - 49 = 29.5
shaded region = 29.5 square cm
Prime numbers 2,3,5,7,11,13,17,19,23
so 2+3+5=10 no
3+5+7=15 no
3+5+11=19 Yes this is your answer
Answer:
8x^15
Step-by-step explanation:
(2x5)3
=(2x5)3
=2x5*2x5*2x5
=8x15
79.881 hope this helps
i might be wrong
Answer: The height of the triangle is: " 3.5 cm " .
_______________________________________________________
<u>
Note</u>: The formula/equation for the area, "A" , of a triangle is:
A = (1/2) * b * h ; or write as: A = (b * h) / 2 ;
_________________________________________________
in which: "A = area of the triangle" ;
"b = base length" ;
"h = "[perpendicular] height" ;
_________________________________________________
Given: h = (b/2) ;
A = 12.25 cm²
{Note: Let us assume that the given area was "12.25 cm² " .}.
_________________________________________________
We are to find the height, "h" ;
The formula for the Area, "A", is: A = (b * h) / 2 ;
Let us rearrange the formula ;
to isolate the "h" (height) on one side of the equation;
→ Multiply EACH side of the equation by "2" ; to eliminate the "fraction" ;
2*A = [ (b * h) / 2 ] * 2 ;
to get: " 2A = b * h " ;
↔ " b * h = 2A " ;
Divide EACH SIDE of the equation by "b" ; to isolate "h" on one side of the equation:
→ (b * h) / b = (2A) / b ;
to get:
→ h = 2A / b ;
Since "h = b/2" ; subtitute "b/2" for "h" ;
Plug in: "12.25 cm² " for "A" ;
→ b/2 = 2A/b ; → Note: " 2A/b = [2* (12.25 cm²) ] / b " ;
Note: " 2* (12.25 cm²) = 24.5 cm² ;
Rewrite as:
→ b/2 = (24.5 cm²) / b ;
_____________________________________
Cross-multiply: b*b = (24.5 cm²) *2 ;
to get: b² = 49 cm² ;
Take the "positive square root" of each side of the equation" ;
to isolate "b" on one side of the equation ; & to solve for "b" ;
→ +√(b²) = +√(49 cm²) ;
→ b = 7 cm ;
Now, we want to solve for "h" (the height) :
_________________________________________________________
→ h = b / 2 = 7 cm / 2 = 3.5 cm ;
_________________________________________________________
Answer: The height of the triangle is: " 3.5 cm <span>" .
</span>_________________________________________________________