No, he is not right.
Integer is a number that can be written without a fractional component, and 1 3/4 doesn't.
Here's an image for you to better understand.
Answer:

Step-by-step explanation:
Composition of functions occurs when we have two functions normally written similar or exactly like f(x) & g(x) - you can have any coefficients to the (x), but the most commonly seen are f(x) and g(x). They are written as either f(g(x)) or (f o g)(x). Because our composition is written as
, we are replacing the x values in the g(x) function with 2 and simplifying the expression.


Now, because we are composing the functions, this value we have solved for now replaces the x-values in the f(x) function. So, f(x) becomes f(6), and we use the same manner as above to simplify.



Therefore, when we compose the functions, our final answer is
.
Answer:heya
Step-by-step explanation:
it is in the form... a raise to the power n / a raise to the power m = a raise to the power n-m..........
so 9 raise to the power 2/9 raise to the power 7= 9 raise to the power(2-7)
=9 raise to the power -5
=1/9 raise to the power 5
hope it helps
1st let's calculate the decreasing rate & let V₁ be the initial value & V₂ the final's
we know that V₂=V₁.e^(r,t) where r=rate & t-time (& e=2.718)
After t= 2 years we can write the following formula
2350,000=240,000.e^(2r)==> 235,000/240000 = e^(2r) =>47/48=e^(2r)
ln(47/48)=2rlne==> ln(47/48)=2rlne=2r (since lne =1)
r= ln(47/48)/2==>r=-0.0210534/2 =-0.01052 ==> (r=-0.01052)
1) Determine when the value of the home will be 90% of its original value.
90% of 240000 =216,000
Now let's apply the formula
216,000=240,000,e^(-0.01052t), the unknown is t. Solving it by logarithm it will give t=10 years
1.a) Would the equation be set up like so: V=240e^.09t? NON, in any case if you solve it will find t=1 year
2)Determine the rate at which the value of the home is decreasing one year after : Already calculated above :(r=-0.01052)
3)The relative rate of change : it's r = -0.01052