Answer:
The answer to the question is
The specific heat capacity of the alloy = 1.77 J/(g·°C)
Explanation:
To solve this, we list out the given variables thus
Mass of alloy = 45 g
Initial temperature of the alloy = 25 °C
Final temperature of the alloy = 37 °C
Heat absorbed by the alloy = 956 J
Thus we have
ΔH = m·c·(T₂ - T₁) where ΔH = heat absorbed by the alloy = 956 J, c = specific heat capacity of the alloy and T₁ = Initial temperature of the alloy = 25 °C , T₂ = Final temperature of the alloy = 37 °C and m = mass of the alloy = 45 g
∴ 956 J = 45 × C × (37 - 25) = 540 g·°C×c or
c = 956 J/(540 g·°C) = 1.77 J/(g·°C)
The specific heat capacity of the alloy is 1.77 J/(g·°C)
Answer: 2. magnesium
Explanation: correct spelling...?
Answer: In Arizona, climate change is already making deadly heat waves, droughts and wildfires across the state worse. These impacts have real costs on Arizonans' health and economy, including heat-related deaths, higher electricity bills, crop losses and more.
Explanation:
https://www.edf.org/climate/costofinaction- this is where I gathered this info. Not mine. But I hope it helps!
Answer:Scientific knowledge can change because it is often examined and re-examined by new investigations and scientific argumentation. Because of these frequent examinations, scientific knowledge becomes stronger, leading to its durability. ... B: Scientific knowledge is durable and robust, but open to change.
Answer:
Explanation:
The gas ideal law is
PV= nRT (equation 1)
Where:
P = pressure
R = gas constant
T = temperature
n= moles of substance
V = volume
Working with equation 1 we can get

The number of moles is mass (m) / molecular weight (mw). Replacing this value in the equation we get.
or
(equation 2)
The cylindrical container has a constant pressure p
The volume is the volume of a cylinder this is

Where:
r = radius
h = height
(pi) = number pi (3.1415)
This cylinder has a radius, r and height, h so the volume is 
Since the temperatures has linear distribution, we can say that the temperature in the cylinder is the average between the temperature in the top and in the bottom of the cylinder. This is:
Replacing these values in the equation 2 we get:
(equation 2)