Answers:
a) 
b) 
c) 
Explanation:
We have the following data:
is the spring constant
is the amplitude of oscillation
is the velocity of the block when
Now let's begin with the answers:
<h3>a) Mass of the block</h3>
We can solve this by the conservation of energy principle:
(1)
Where:
is the initial potential energy
is the initial kinetic energy
is the final potential energy
is the final kinetic energy
Then:
(2)
Isolating
:
(3)
(4)
(5)
<h3>b) Period</h3>
The period
is given by:
(6)
Substituting (5) in (6):
(7)
(8)
<h3>c) Maximum acceleration</h3>
The maximum acceleration
is when the force is maximum
, as well :
(9)
Being 
Hence:
(10)
Finding
:
(11)
(12)
Finally:

Given:
m = 555 g, the mass of water in the calorimeter
ΔT = 39.5 - 20.5 = 19 °C, temperature change
c = 4.18 J/(°C-g), specific heat of water
Assume that all generated heat goes into heating the water.
Then the energy released is
Q = mcΔT
= (555 g)*(4.18 J/(°C-g)*(19 °C)
= 44,078.1 J
= 44,100 J (approximately)
Answer: 44,100 J
According to Newton's Second Law of Motion, the net force experienced by the system is equal to the mass of the system in question times the acceleration in motion. In this case, the net force is the difference of gravitational force and the force experience by the motion of the airplane. This difference is already given to be 210 N.
Net force = ma
210 N = (73 kg)(a)
a = +2.92 m/s²
Thus, the acceleration of the airplane's motion is 2.92 m/s² to the positive direction which is upwards.
The simple answer would be; closeness to the equator combined with general climate.
Answer:
I believe it might be point A since the question ask what will result in the ln a largest increase in potential energy
Explanation: